In triangle PAT. ∠P=36º, ∠A=56º, and PA=10. Point U and G lie on sides TP and TA respectively so that PU=AG=1. Let M and N be the midpoints of segments PA and UG respectively. What is the degree measure of the acute angle formed by lines MN and PA?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Create a rectangular coordinate system with P as the origin.
We get:
P (0,0)
W (5,0)
A (10, 0)
U (cos∠TPA, sin∠TPA)
=> U (cos 36º, sin 36º)
=> G (10-cos∠56º, sin∠56º)
Therefore, N ((10 + cos36º -cos56º)/2, (sin36º + sin 56º)/2)
=> tan x = (sin36º + sin 56º)/(cos 36º + cos 56 º)
(In order to simplify the above equation, we need to use Sum to Product Formula)
sin x + sin y = 2sin ((x+y)/2) cos ((x-y)/2)
cos x + cos y = 2cos ((x+y)/2) cos ((x-y)/2)
=>
tan x = (2sin (36º) cos (10º))/2/(10 + 2cos (36º) cos (10º))/2 -5
tan x = sin36º + sin56º/ cos36º + cos 56º
tan x = 2 sin46º cos10º/2 cos 46º sin 10º
tan x = sin46º/cos46º
tan x = cot 10º = tan 80º
The acute angle is 80º