Geometry - Using Formulas #1

Geometry Level pending

There is a convex quadrilateral ABCD \text{ABCD} . It satisfies below conditions:

  • ABC = 18 0 CDA \angle \text{ABC}=180^{\circ}-\angle \text{CDA}

  • AB BC CD DA = 14 \overline{\text{AB}}\cdot\overline{\text{BC}}\cdot\overline{\text{CD}}\cdot\overline{\text{DA}}=14

  • AC BD = 8 \overline{\text{AC}}\cdot\overline{\text{BD}}=8

Add up all the possible values of AB BC CD DA \dfrac{\overline{\text{AB}}}{\overline{\text{BC}}}\cdot\dfrac{\overline{\text{CD}}}{\overline{\text{DA}}} and answer to 4 4 decimal places.


The answer is 2.5714.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 20, 2017

The formula used for solving this problem is Ptolemy's Theorem .


Since ABC = 18 0 CDA \angle \text{ABC}=180^{\circ}-\angle \text{CDA} , we know that quadrilateral ABCD \text{ABCD} is inscribed in a circle.

Therefore, according to Ptolemy's Theorem , AB CD + BC DA = AC BD \overline{\text{AB}}\cdot\overline{\text{CD}}+\overline{\text{BC}}\cdot\overline{\text{DA}}=\overline{\text{AC}}\cdot\overline{\text{BD}} .

Let AB CD = a \overline{\text{AB}}\cdot\overline{\text{CD}}=a and BC DA = b \overline{\text{BC}}\cdot\overline{\text{DA}}=b .

From the given conditions we can see that a b = 14 ab=14 and a + b = 8 a+b=8 .

If we let α \alpha and β \beta be the roots of the quadratic equation x 2 8 x + 14 = 0 x^2-8x+14=0 , possible values for AB BC CD DA = a b \dfrac{\overline{\text{AB}}}{\overline{\text{BC}}}\cdot\dfrac{\overline{\text{CD}}}{\overline{\text{DA}}}=\dfrac{a}{b} are β α \dfrac{\beta}{\alpha} and α β \dfrac{\alpha}{\beta} .

Also, α + β = 8 \alpha+\beta=8 and α β = 14 \alpha\beta=14 .

Therefore, the sum we're trying to find is β α + α β = ( α + β ) 2 2 α β α β = 18 7 = 2.57142857... . \dfrac{\beta}{\alpha}+\dfrac{\alpha}{\beta}=\dfrac{(\alpha+\beta)^2-2\alpha\beta}{\alpha\beta}=\boxed{\dfrac{18}{7}=2.57142857...}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...