Geometry With Calculus 2? Maybe

Geometry Level 4

If the least perimeter of an isosceles triangle in which a circle of diameter 2 3 units 2 \sqrt{3} \ \text{units} can be inscribed is in the form A B A \sqrt{B} for B B is a Square-free integer, what is A + B A + B ?

3 19 13 5 9 11 7 15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Apr 2, 2017

d = 2 3 r = 3 d = 2 \sqrt{3} \implies r = \sqrt{3}

Now, let's say, you have a isosceles \triangle with sides a , a , b a \ , \ a \ , \ b .

Denote P = a + a + b = 2 a + b P = a + a + b = 2a + b

Then, A r e a = 3 P 2 = P 2 ( P 2 a ) ( P 2 a ) ( P 2 b ) Area_{ \triangle } = \sqrt{3} \cdot \cfrac{P}{2} = \sqrt{\cfrac{P}{2} \cdot \left( \cfrac{P}{2} - a \right ) \cdot \left( \cfrac{P}{2} - a \right ) \cdot \left( \cfrac{P}{2} - b \right )}

3 P 2 4 = P 2 ( P 2 a ) ( P 2 a ) ( P 2 b ) \implies \cfrac{3P^2}{4} = \cfrac{P}{2} \cdot \left( \cfrac{P}{2} - a \right ) \cdot \left( \cfrac{P}{2} - a \right ) \cdot \left( \cfrac{P}{2} - b \right )

By A.M. - G.M. ,

P 2 + ( P 2 a ) + ( P 2 a ) + ( P 2 b ) 4 = 2 P P 4 = P 4 P 2 ( P 2 a ) ( P 2 a ) ( P 2 b ) 4 = 3 P 2 4 4 \implies \cfrac{\cfrac{P}{2} + \left( \cfrac{P}{2} - a \right ) + \left( \cfrac{P}{2} - a \right ) + \left( \cfrac{P}{2} - b \right )}{4} = \cfrac{2P - P}{4} = \cfrac{P}{4} \geq \sqrt[4]{\cfrac{P}{2} \cdot \left( \cfrac{P}{2} - a \right ) \cdot \left( \cfrac{P}{2} - a \right ) \cdot \left( \cfrac{P}{2} - b \right )} = \sqrt[4]{\cfrac{3P^2}{4}}

raising to fourth-power both sides, P 4 256 3 P 2 4 \implies \cfrac{P^4}{256} \geq \cfrac{3P^2}{4}

multiply both sides by 256 1 P 2 P 2 192 256 \cdot \cfrac{1}{P^2} \implies P^2 \geq 192

P 8 3 A = 8 , B = 3 A + B = 11 \therefore P \geq 8 \sqrt{3} \implies \boxed{A = 8 , B = 3 \implies A + B = 11 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...