In △ A B C with A B = A C , point P lies on A C such that A P = 2 C P and B P = 1 . Find the maximum area of △ A B C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We use the Cartesian Coordinate System. Take A = ( 0 , 0 ) , C = ( 3 a , 3 b ) , where a , b > 0 and B = ( − 3 a , 3 b ) . By section formula, P = ( 2 a , 2 b ) . Now,
Area of Δ A B C = 2 1 × height × B C = 2 1 × 3 b × 6 a = 9 a b .
Also, 1 = B P 2 = ( 5 a ) 2 + b 2 ≥ 2 ( 5 a ) ( b ) = 1 0 a b , so Δ A B C = 9 a b ≤ 0 . 9 , with equality iff 5 a = b ( = 2 1 )
Let ∠ B = ∠ C = a ⟹ ∠ A = 1 8 0 − 2 a
Let x = C P ⟹ A P = 2 x and A B = 3 x
By law of cosines in ∆ABP,
9 x 2 + 4 x 2 − 2 ( 3 x ) ( 2 x ) ( cos ( 1 8 0 − 2 a ) ) 1 3 x 2 − 1 2 ( − cos 2 a ) ( x 2 ) 1 3 x 2 + 1 2 ( cos 2 a ) ( x 2 ) 1 3 + 1 2 cos 2 a 1 2 cos 2 a cos 2 a sin 2 a sin 2 a = 1 = 1 = 1 = x 2 1 = x 2 1 − 1 3 x 2 = 1 2 x 2 1 − 1 3 x 2 = r x = r y = 1 2 x 2 1 4 4 x 4 − ( 1 − 2 6 x 2 + 1 6 9 x 4 ) = 1 2 x 2 − 1 + 2 6 x 2 − 2 5 x 4
Now, Area of ∆ABC = 2 1 ( A B ) ( A C ) ( sin A ) = 0 . 5 × 3 x × 3 x × sin ( 1 8 0 − 2 a )
= 0 . 5 × ( 9 x 2 ) × ( sin 2 a ) = 0 . 5 × ( 9 x 2 ) × 1 2 x 2 − 1 + 2 6 x 2 − 2 5 x 4 = 2 4 9 ( − 1 + 2 6 x 2 − 2 5 x 4 ) = 2 4 9 ⎝ ⎛ − 2 5 ( x 2 − 2 5 1 3 ) 2 + 2 5 1 4 4 ⎠ ⎞
Max Area of ∆ABC occurs when − 2 5 ( x 2 − 2 5 1 3 ) 2 = 0
⟹ Max area of △ A B C = 2 4 9 ⎝ ⎛ 0 + 2 5 1 4 4 ⎠ ⎞ = 2 4 9 × 5 1 2 = 1 0 9 .
i did it in the same way as done by u.
Problem Loading...
Note Loading...
Set Loading...
Let ∠ P B C = α , ∠ A C B = A B C = θ and A B = A C = 3 a ⟹ C P = a and A P = 2 a .
Using sine rule on △ P B C : a sin α = 1 sin θ ⟹ sin α = a sin θ .
Using sine rule on △ A B P :
2 a sin ( θ − α ) sin θ cos α − sin α cos θ sin θ cos α ⟹ tan θ = 1 sin ( 1 8 0 ∘ − 2 θ ) = 2 a sin 2 θ = 4 a sin θ cos θ = 4 sin α cos θ = 5 sin α cos θ = 5 tan α Note that sin α = a sin θ
Let B C = b , then b = cos α + tan θ sin α = cos α + 5 tan α sin α = 5 6 cos α
Let the height of △ A B C be h . Then the area of △ A B C is:
A = 2 b h = 2 b ⋅ 2 b tan θ = 4 5 b 2 tan α = 4 5 ( 5 6 cos α ) 2 tan α = 5 9 sin α cos α
⟹ A = 1 0 9 sin 2 α and A m a x = 1 0 9 = 0 . 9 , when sin 2 α = 1 .