Geometry With Calculus?

Geometry Level 4

In A B C \triangle ABC with A B = A C AB = AC , point P P lies on A C AC such that A P = 2 C P AP = 2CP and B P = 1 BP = 1 . Find the maximum area of A B C \triangle ABC .


The answer is 0.9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let P B C = α \angle PBC = \alpha , A C B = A B C = θ \angle ACB = ABC = \theta and A B = A C = 3 a AB=AC=3a C P = a \implies CP=a and A P = 2 a AP=2a .

Using sine rule on P B C \triangle PBC : sin α a = sin θ 1 \dfrac {\sin \alpha}a = \dfrac {\sin \theta}1 sin α = a sin θ \implies {\color{#3D99F6} \sin \alpha = a \sin \theta} .

Using sine rule on A B P \triangle ABP :

sin ( θ α ) 2 a = sin ( 18 0 2 θ ) 1 sin θ cos α sin α cos θ = 2 a sin 2 θ = 4 a sin θ cos θ Note that sin α = a sin θ = 4 sin α cos θ sin θ cos α = 5 sin α cos θ tan θ = 5 tan α \begin{aligned} \frac {\sin (\theta-\alpha)}{2a} & = \frac {\sin (180^\circ - 2\theta)}1 \\ \sin \theta \cos \alpha - \sin \alpha \cos \theta & = 2a \sin 2 \theta \\ & = 4 {\color{#3D99F6} a \sin \theta} \cos \theta & \small \color{#3D99F6} \text{Note that } \sin \alpha = a \sin \theta \\ & = 4 {\color{#3D99F6} \sin \alpha} \cos \theta \\ \sin \theta \cos \alpha & = 5 \sin \alpha \cos \theta \\ \implies \tan \theta & = 5 \tan \alpha \end{aligned}

Let B C = b BC = b , then b = cos α + sin α tan θ = cos α + sin α 5 tan α = 6 5 cos α b = \cos \alpha + \dfrac {\sin \alpha}{\tan \theta} = \cos \alpha + \dfrac {\sin \alpha}{5 \tan \alpha} = \dfrac 65 \cos \alpha

Let the height of A B C \triangle ABC be h h . Then the area of A B C \triangle ABC is:

A = b h 2 = b 2 b 2 tan θ = 5 b 2 4 tan α = 5 4 ( 6 5 cos α ) 2 tan α = 9 5 sin α cos α \begin{aligned} A & = \frac {bh}2 = \frac b2 \cdot \frac b2 \tan \theta = \frac {5b^2}4 \tan \alpha = \frac 54 \left( \dfrac 65 \cos \alpha \right)^2 \tan \alpha = \frac 95 \sin \alpha \cos \alpha \end{aligned}

A = 9 10 sin 2 α \implies A = \dfrac 9{10} \sin 2\alpha and A m a x = 9 10 = 0.9 A_{max} = \dfrac 9{10} = \boxed{0.9} , when sin 2 α = 1 \sin 2 \alpha = 1 .

Shourya Pandey
Mar 9, 2017

We use the Cartesian Coordinate System. Take A = ( 0 , 0 ) , C = ( 3 a , 3 b ) A= (0,0) , C = (3a,3b) , where a , b > 0 a,b > 0 and B = ( 3 a , 3 b ) B= (-3a,3b) . By section formula, P = ( 2 a , 2 b ) P= (2a,2b) . Now,

Area of Δ A B C = 1 2 × \Delta ABC = \frac{1}{2} \times height × B C = 1 2 × 3 b × 6 a = 9 a b \times BC = \frac{1}{2} \times 3b \times 6a = 9ab .

Also, 1 = B P 2 = ( 5 a ) 2 + b 2 2 ( 5 a ) ( b ) = 10 a b 1= BP^{2} = (5a)^{2} + b^{2} \geq 2(5a)(b) = 10ab , so Δ A B C = 9 a b 0.9 \Delta ABC = 9ab \leq 0.9 , with equality iff 5 a = b ( = 1 2 ) 5a=b (= \frac{1}{\sqrt{2}})

Nice implementation of the cartesian coordinates. Makes the solution much simpler :)

Calvin Lin Staff - 4 years, 3 months ago
Christian Daang
Mar 8, 2017

Let B = C = a A = 180 2 a \angle B = \angle C = a \implies \angle A = 180 - 2a

Let x = C P A P = 2 x and A B = 3 x x = CP \implies AP = 2x \ \text{and} \ AB = 3x

By law of cosines in ∆ABP,

9 x 2 + 4 x 2 2 ( 3 x ) ( 2 x ) ( cos ( 180 2 a ) ) = 1 13 x 2 12 ( cos 2 a ) ( x 2 ) = 1 13 x 2 + 12 ( cos 2 a ) ( x 2 ) = 1 13 + 12 cos 2 a = 1 x 2 12 cos 2 a = 1 13 x 2 x 2 cos 2 a = 1 13 x 2 12 x 2 = x r sin 2 a = y r = 144 x 4 ( 1 26 x 2 + 169 x 4 ) 12 x 2 sin 2 a = 1 + 26 x 2 25 x 4 12 x 2 \begin{aligned} 9x^2 + 4x^2 - 2(3x)(2x)( \cos(180-2a)) & = 1 \\ 13x^2 - 12(- \cos 2a)(x^2) & = 1 \\ 13x^2 + 12(\cos 2a)(x^2) & = 1 \\ 13 + 12 \cos 2a & = \cfrac{1}{x^2} \\ 12 \cos 2a & = \cfrac{1 - 13x^2}{x^2} \\ \cos 2a & = \cfrac{1 - 13x^2}{12x^2} = \cfrac{x}{r} \\ \sin 2a & = \cfrac{y}{r} = \cfrac{\sqrt{144x^4 - (1 - 26x^2 + 169x^4)}}{12x^2} \\ \sin 2a & = \cfrac{\sqrt{-1 + 26x^2 - 25x^4}}{12x^2} \end{aligned}

Now, Area of ∆ABC = 1 2 ( A B ) ( A C ) ( sin A ) = 0.5 × 3 x × 3 x × sin ( 180 2 a ) \cfrac{1}{2}(AB)(AC)(\sin A) = 0.5 \times 3x \times 3x \times \sin (180-2a)

= 0.5 × ( 9 x 2 ) × ( sin 2 a ) = 0.5 × ( 9 x 2 ) × 1 + 26 x 2 25 x 4 12 x 2 = 9 24 ( 1 + 26 x 2 25 x 4 ) = 9 24 ( 25 ( x 2 13 25 ) 2 + 144 25 ) = 0.5\times (9x^2) \times (\sin 2a) \\ = 0.5 \times (9x^2) \times \cfrac{\sqrt{-1 + 26x^2 - 25x^4}}{12x^2} \\ = \cfrac{9}{24} \left(\sqrt{-1 + 26x^2 - 25x^4} \right) \\ = \cfrac{9}{24} \left(\sqrt{-25 \left(x^2 - \cfrac{13}{25} \right)^2 + \cfrac{144}{25}} \right)

Max Area of ∆ABC occurs when 25 ( x 2 13 25 ) 2 = 0 -25 \left(x^2 - \cfrac{13}{25} \right)^2 = 0

Max area of A B C = 9 24 ( 0 + 144 25 ) = 9 24 × 12 5 = 9 10 \begin{aligned} \implies \text{Max area of} \ \triangle ABC & = \cfrac{9}{24} \left(\sqrt{0 + \cfrac{144}{25}} \right) \\ & = \cfrac{9}{24} \times \cfrac{12}{5} \\ & = \cfrac{9}{10} \end{aligned} .

i did it in the same way as done by u.

M@dhur T. - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...