Get lost in cot \cot

Geometry Level 3

cot ( n = 1 4 cot 1 ( 1 + k = 1 n 2 k ) ) \large \cot \left(\sum_{n=1}^4 \cot^{-1} \left(1 + \sum_{k=1}^n 2k \right) \right)

If the above expression can be simplified into A B \dfrac{A}{B} , where A A and B B are co-prime positive integers, find the value of A B A-B .


Bonus : Generalize this for any m N m \in \mathbb{N} , such that T m = cot ( n = 1 m cot 1 ( 1 + k = 1 n 2 k ) ) \displaystyle T_m = \cot \left(\sum_{n=1}^m \cot^{-1} \left(1 + \sum_{k=1}^n 2k\right) \right) .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 20, 2018

Let θ n = cot 1 ( 1 + k = 1 n 2 k ) = cot 1 ( n 2 + n + 1 ) \displaystyle \theta_n = \cot^{-1} \left(1+\sum_{k=1}^n 2k\right) = \cot^{-1} \left(n^2+n+1\right) and S m = n = 1 m θ n \displaystyle S_m = \sum_{n=1}^m \theta_n . Then we have:

\(\begin{array} {} m = 1 & \implies S_1 = \theta_1 = \cot^{-1} 3 & \implies S_{\color{blue}1} = \cot^{-1} \left(\dfrac {{\color{blue}1}+2}{\color{blue}1} \right) \\ m = 2 & \implies S_2 = \theta_1 + \theta_2 = \cot^{-1} 3 + \cot^{-1} 7 = \cot^{-1} \dfrac {3\times 7 - 1}{3 + 7} = \cot^{-1} 2 & \implies S_{\color{blue}2} = \cot^{-1} \left(\dfrac {{\color{blue}2}+2}{\color{blue}2} \right) \\ m = 3 & \implies S_3 = S_2 + \theta_3 = \cot^{-1} 2 + \cot^{-1} 13 = \cot^{-1} \dfrac {2\times 13 - 1}{2 + 13} = \cot^{-1} \dfrac 53 & \implies S_{\color{blue}3} = \cot^{-1} \left(\dfrac {{\color{blue}3}+2}{\color{blue}3} \right) \end{array} \)

This implies that S m = cot 1 m + 2 m S_m = \cot^{-1} \dfrac {m+2}m , which can be proven by induction as follows:

S m + 1 = S m + cot 1 ( ( m + 1 ) 2 + m + 1 + 1 ) = cot 1 m + 2 m + cot 1 ( m 2 + 3 m + 3 ) = cot 1 m + 2 m ( m 2 + 3 m + 3 ) 1 m + 2 m + m 2 + 3 m + 3 = cot 1 m 3 + 5 m 2 + 8 m + 6 m 3 + 3 m 2 + 4 m + 2 = cot 1 ( m + 3 ) ( m 2 + 2 m 2 + 2 ) ( m + 1 ) ( m 2 + 2 m 2 + 2 ) = cot 1 m + 3 m + 1 Proven \begin{aligned} S_{m+1} & = S_m + \cot^{-1} \left((m+1)^2 + m+1+1\right) \\ & = \cot^{-1} \frac {m+2}m + \cot^{-1} \left(m^2+3m+3\right) \\ & = \cot^{-1} \frac {\frac {m+2}m(m^2+3m+3)-1}{\frac {m+2}m+m^2+3m+3} \\ & = \cot^{-1} \frac {m^3+5m^2+8m+6}{m^3+3m^2+4m+2} \\ & = \cot^{-1} \frac {(m+3)(m^2+2m^2+2)}{(m+1)(m^2+2m^2+2)} \\ & = \cot^{-1} \frac {m+3}{m+1} & \small \color{#3D99F6} \text{Proven} \end{aligned}

Therefore, X m = cot ( n = 1 m cot 1 ( 1 + k = 1 n 2 k ) ) = cot S m = cot ( cot 1 m + 2 m ) = m + 2 m \displaystyle X_m = \cot\left(\sum_{n=1}^m \cot^{-1} \left(1 + \sum_{k=1}^n 2k\right) \right) = \cot S_m = \cot \left(\cot^{-1} \frac {m+2}m \right) = \frac {m+2}m . For m = 4 m=4 , X 4 = 4 + 2 4 = 3 2 X_4 = \dfrac {4+2}4 = \dfrac 32 . A B = 3 2 = 1 \implies A-B = 3-2 = \boxed 1 .

Parth Sankhe
Oct 20, 2018

i = 1 n 2 i = 2 ( n ( n + 1 ) 2 ) = n ( n + 1 ) \sum_{i=1}^n2i = 2(\frac {n(n+1)}{2})=n(n+1)

c o t 1 ( n 2 + n + 1 ) = t a n 1 ( 1 1 + n ( n + 1 ) ) cot^{-1}(n^2+n+1)=tan^{-1}(\frac {1}{1+n(n+1)})

= t a n 1 ( n + 1 ) ( n ) 1 + n ( n + 1 ) = t a n 1 ( n + 1 ) t a n 1 n tan^{-1}\frac {(n+1)-(n)}{1+n(n+1)}=tan^{-1}(n+1)-tan^{-1}n

Summation of this upto n=4 will give you t a n 1 5 t a n 1 1 tan^{-1}5-tan^{-1}1

Ans:- 1 t a n ( t a n 1 5 π 4 ) = 1 5 1 1 + 5 1 = 6 4 = 3 2 \frac {1}{tan(tan^{-1}5 - \frac {π}{4})}= \frac{1}{\frac {5-1}{1+5\cdot 1}}=\frac {6}{4}= \frac{3}{2}

Thus, the answer = 3 - 2 = 1.

Good one, why not try to reducing general term into a more simpler form consisting only of n n

Viki Zeta - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...