Get ready Part 12

Calculus Level 3

Let ( x 1 , x 2 , , x n ) (x_1, x_2, \ldots, x_n) be a point chosen at random from the n n -dimensional region defined by 0 < x 1 < x 2 < < x n < 1 0<x_1<x_2<\dots<x_n< 1 . Let f f be a continuous function on [ 0 , 1 ] [0,1] with f ( 1 ) = 0 f(1)=0 .Set x 0 = 0 x_0=0 and x n + 1 = 1 x_{n+1}=1 .

Is it true that the expected value of the Riemann sum i = 0 n ( x i + 1 x i ) f ( x i + 1 ) \displaystyle \sum_{i=0}^n (x_{i+1}-x_i)f(x_{i+1}) is 0 1 f ( t ) P ( t ) d t \displaystyle \int_0^1 f(t)P(t) \, dt , where P P is a polynomial of degree n n ,independent of f f , with 0 P ( t ) 1 0 \le P(t) \le 1 for 0 t 1 0 \le t \le 1 ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 7, 2018

The joint probability distribution function of x i x_i and x i + 1 x_{i+1} (for 1 i n 1 1 \le i \le n-1 ) is p i ( s , t ) = n ! ( i 1 ) ! ( n 1 i ) ! s i 1 ( 1 t ) n 1 i 0 s < t 1 p_i(s,t) \; = \; \frac{n!}{(i-1)!(n-1-i)!}s^{i-1}(1-t)^{n-1-i} \hspace{2cm} 0 \le s < t \le 1 which implies that the probability distribution function of x i x_i (for 1 i n 1 \le i \le n ) is q i ( s ) = n ! ( i 1 ) ! ( n i ) ! s i 1 ( 1 s ) n i 0 s 1 q_i(s) \; = \; \frac{n!}{(i-1)!(n-i)!}s^{i-1}(1-s)^{n-i} \hspace{2cm} 0 \le s \le 1 If 1 i n 1 1 \le i \le n-1 then E [ x i f ( x i + 1 ) ] = 0 s < t 1 s f ( t ) p i ( s , t ) d s d t = n ! ( i + 1 ) ( i 1 ) ! ( n i 1 ) ! 0 1 t i + 1 ( 1 t ) n i 1 f ( t ) d t = i ( n i + 1 ) 0 1 t i + 1 ( 1 t ) n i 1 f ( t ) d t \begin{aligned} E[x_if(x_{i+1})] & = \; \iint_{0 \le s < t \le 1}s f(t) p_i(s,t)\,ds\,dt \; = \; \frac{n!}{(i+1)(i-1)!(n-i-1)!}\int_0^1 t^{i+1}(1-t)^{n-i-1}f(t)\,dt \\ & = \; i\binom{n}{i+1}\int_0^1 t^{i+1}(1-t)^{n-i-1}f(t)\,dt \end{aligned} while E [ x i f ( x i + 1 ) ] = 0 E[x_if(x_{i+1})] = 0 if i = 0 , n i = 0,n . On the other hand, if 1 i n 1 \le i \le n then E [ x i f ( x i ) ] = 0 1 t f ( t ) q i ( t ) d t = i ( n i ) 0 1 t i ( 1 t ) n i f ( t ) d t E[x_if(x_i)] \; = \; \int_0^1 tf(t)q_i(t)\,dt \; = \; i\binom{n}{i}\int_0^1 t^i(1-t)^{n-i}f(t)\,dt while E [ x n + 1 f ( x n + 1 ) ] = 0 E[x_{n+1}f(x_{n+1})] = 0 . Thus E [ i = 0 n ( x i + 1 x i ) f ( x i + 1 ) ] = i = 1 n E [ x i f ( x i ) ] i = 0 n E [ x i f ( x i + 1 ) ] = i = 1 n i ( n i ) 0 1 t i ( 1 t ) n i f ( t ) d t i = 1 n 1 i ( n i + 1 ) 0 1 t i + 1 ( 1 t ) n i 1 f ( t ) d t = i = 1 n i ( n i ) 0 1 t i ( 1 t ) n i f ( t ) d t i = 2 n ( i 1 ) ( n i ) 0 1 t i ( 1 t ) n i f ( t ) d t = i = 1 n ( n i ) 0 1 t i ( 1 t ) n i f ( t ) d t = 0 1 [ 1 ( 1 t ) n ] f ( t ) d t \begin{aligned} E\left[\sum_{i=0}^n (x_{i+1}-x_i)f(x_{i+1})\right] & = \; \sum_{i=1}^n E[x_if(x_i)] - \sum_{i=0}^n E[x_if(x_{i+1})] \\ & = \; \sum_{i=1}^n i\binom{n}{i}\int_0^1 t^i(1-t)^{n-i}f(t)\,dt - \sum_{i=1}^{n-1}i\binom{n}{i+1}\int_0^1 t^{i+1}(1-t)^{n-i-1}f(t)\,dt \\ & = \; \sum_{i=1}^n i\binom{n}{i}\int_0^1 t^i(1-t)^{n-i}f(t)\,dt - \sum_{i=2}^{n}(i-1)\binom{n}{i}\int_0^1 t^{i}(1-t)^{n-i}f(t)\,dt \\ & = \; \sum_{i=1}^n \binom{n}{i}\int_0^1 t^i(1-t)^{n-i}f(t)\,dt \; = \; \int_0^1\big[1 - (1-t)^n\big]f(t)\,dt \end{aligned} so that P ( t ) = 1 ( 1 t ) n P(t) = 1 - (1-t)^n is a polynomial of degree n n with 0 P ( t ) 1 0 \le P(t) \le 1 for all 0 t 1 0 \le t \le 1 .


It is an elegant consequence of this that lim n E [ i = 0 n ( x i + 1 x i ) f ( x i + 1 ) ] = 0 1 f ( t ) d t \lim_{n \to \infty}\,E\left[\sum_{i=0}^n (x_{i+1}-x_i)f(x_{i+1})\right] \; = \; \int_0^1 f(t)\,dt

Sorry if I ask a silly daft question,but what is E [ ] E[ \cdot ]

Gia Hoàng Phạm - 2 years, 7 months ago

Log in to reply

The expectation of a random variable, which is sometimes described as the expected value of that RV.

Mark Hennings - 2 years, 7 months ago
Shasha Tewari
Nov 7, 2018

This is simply the definition of a weight function, since the problem has us consider a distribution.

But you need to show that the weight function P P is a polynomial...

Mark Hennings - 2 years, 7 months ago

Log in to reply

Ah, I see.

Shasha Tewari - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...