Get ready Part 2

Calculus Level 2

Evaluate 0 t 1 2 e 1985 ( t + t 1 ) d t × 1 0 1726 \displaystyle \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-1985(t+t^{-1})} dt \times 10^{1726} to the 4th decimal place.


The answer is 2.8222.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 21, 2018

I = 0 t 1 2 e a ( t + t 1 ) d t Let x 2 = t 2 x d x = d t = 0 2 e a ( x 2 + 1 x 2 ) d x = 2 0 e a ( x 1 x ) 2 2 a d x = 2 e 2 a 0 e a ( x 1 x ) 2 d x Using 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 1 e 2 a 0 ( 1 + 1 x 2 ) e a ( x 1 x ) 2 d x Let u = x 1 x d u = ( 1 + 1 x 2 ) d x = 1 e 2 a e a u 2 d u Since the integrand is even, = 2 e 2 a 0 e a u 2 d u Error function erf ( z ) = 2 π 0 z e t 2 d t = erf ( ) e 2 a π a = 1 e 2 a π a erf ( ) = 1 and put a = 1985 = 2.82228 × 1 0 1726 \begin{aligned} I & = \int_0^\infty t^{-\frac 12} e^{-a(t+t^{-1})} dt & \small \color{#3D99F6} \text{Let }x^2 = t \implies 2x \ dx = dt \\ & = \int_0^\infty 2 e^{-a\left(x^2+\frac 1{x^2}\right)} dx \\ & = 2 \int_0^\infty e^{-a\left(x-\frac 1x\right)^2-2a} dx \\ & = \frac 2{e^{2a}} \int_0^\infty e^{-a\left(x-\frac 1x\right)^2} dx & \small \color{#3D99F6} \text{Using }\int_0^\infty f(x) \ dx = \int_0^\infty \frac {f \left(\frac 1x\right)}{x^2} \ dx \\ & = \frac 1{e^{2a}} \int_0^\infty \left(1+\frac 1{x^2}\right) e^{-a\left(x-\frac 1x\right)^2} dx & \small \color{#3D99F6} \text{Let }u = x - \frac 1x \implies du = \left(1 + \frac 1{x^2} \right) dx \\ & = \frac 1{e^{2a}} \int_{-\infty}^\infty e^{-au^2} du & \small \color{#3D99F6} \text{Since the integrand is even,} \\ & = \frac 2{e^{2a}} \int_0^\infty e^{-au^2} du & \small \color{#3D99F6} \text{Error function erf }(z) = \frac 2{\sqrt \pi} \int_0^z e^{-t^2} dt \\ & = \frac {\color{#3D99F6}\text{erf }(\infty)}{e^{2a}}\sqrt{\frac \pi a} = \frac {\color{#3D99F6}1}{e^{2a}}\sqrt{\frac \pi a} & \small \color{#3D99F6} \text{erf }(\infty) = 1 \text{ and put }a = 1985 \\ & = 2.82228 \times 10^{-1726} \end{aligned}

Therefore, 1 0 1726 I 2.8223 10^{1726}I \approx \boxed{2.8223} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...