Get ready Part 29

Calculus Level 1

Let f f be a real function on the real line with continuous third derivative. Does there exists a point a a such that f ( a ) f ( a ) f ( a ) f ( a ) 0 f(a) \cdot f′(a) \cdot f′′(a) \cdot f′′′(a) \ge 0 ?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Oon Han
Jun 29, 2019

The solution The solution

It can't equal to 0,i think.

bill Clinton - 1 year, 8 months ago

oh ya

but it still satisfies the inequality which says more then or equal to 0 so it should be fine.

Oon Han - 1 year, 8 months ago

Yes it can, consider f(x) = 5. f'=0. f''=0. f'''=0

Niels Keukens - 1 year, 5 months ago

The goal is to prove that there is always such a a for all f C 3 ( R ) f\in C^3(\mathbb{R}) not to give an example !

Théo Leblanc - 1 year ago

But is an example sufficient I don't think so

Rachit Gandhi - 11 months, 3 weeks ago
Théo Leblanc
May 20, 2020

Proof by contradiction :

Suppose that there is f C 3 ( R ) f\in C^3(\mathbb{R}) such that x R , f ( x ) f ( x ) f ( x ) f ( x ) < 0 \forall x\in\mathbb{R}, \ f(x)f'(x)f''(x)f'''(x)<0

Therefore f f''' is either > 0 >0 or < 0 <0 (if not by continuity, f f''' has a zero). Without loss of generality ( f f ) (f\leftarrow -f) , we can suppose f > 0 f'''>0 . Then because f f'' is either > 0 >0 or < 0 <0 , if we let a = lim f a=\lim\limits_{-\infty}f'' and b = lim + f b=\lim\limits_{+\infty}f'' (which exist because f f'' is increasing) we have :

  • if f > 0 f''>0 a 0 and + b > a a\geq 0 \ \text{and} \ +\infty\geq b>a
  • if f < 0 f''<0 a < b and b 0 -\infty \leq a < b \ \text{and} \ b\leq 0

The first case : f > 0 f''>0

Because b > 0 b>0 , necessarily f > 0 f'>0 . Indeed, f ( x ) = 0 x f ( t ) d t + C x + + f'(x)=\int_0^x f''(t)dt +C \underset{x\to+\infty}{\longrightarrow} +\infty

The same argument shows that f > 0 f>0 , therefore f f f f > 0 ff'f''f'''>0 absurd.

Second case : f < 0 f''<0

Because a < 0 a<0 , necessarily f > 0 f'>0 . Indeed, f ( x ) = 0 x f ( t ) d t + C x + f'(x)=\int_0^x f''(t)dt +C' \underset{x\to-\infty}{\longrightarrow} +\infty Then, necessarily f < 0 f<0 because f ( x ) = 0 x f ( t ) d t + C x f(x)=\int_0^x f'(t)dt + C'' \underset{x\to-\infty}{\longrightarrow} -\infty And at the end f f f f > 0 ff'f''f'''>0 , absurd.

Edwin Gray
May 22, 2019

Let f(x) = x^3, f'(x) = 3x^2, f''(x) = 6x, f'''(x) = 6. Then f(x) f'(x) f''(x)*f'''(x) = 108x^6. Let x be any real number.

Abhishek Sinha
May 23, 2019

Not always. Take, for example f ( x ) = exp ( x ) , x R . f(x)=\exp(-x), ~~ x \in \mathbb{R}. Then f ( a ) f ( a ) f ( a ) f ( a ) = exp ( 4 a ) < 0 , a R . f(a)f'(a)f''(a)f'''(a)= -\exp(-4a) < 0, \forall a \in \mathbb{R}.

Not sure where you are getting the negative sign in front of the e 4 a e^{-4a} since:

e x ( d d x e x ) ( d 2 d x 2 e x ) ( d 3 d x 3 e x ) = ( e x ) ( e x ) ( e x ) ( e x ) = e 4 x > 0 x R \begin{aligned} e^{-x} \left(\frac{d}{dx}e^{-x}\right) \left(\frac{d^{2}}{dx^{2}}e^{-x}\right) \left(\frac{d^{3}}{dx^{3}}e^{-x}\right) &= \left(e^{-x}\right) \left(-e^{-x}\right) \left(e^{-x}\right) \left(-e^{-x}\right) \\&= e^{-4x} > 0 \quad \forall x \in \mathbb{R} \end{aligned}

Yannis Wu-Yip - 2 years ago

Oops. My bad!

Abhishek Sinha - 2 years ago

Log in to reply

So, are there true counter-examples?

Gia Hoàng Phạm - 2 years ago

Let f ( x ) = e x f(x) = e^x , then for all real a a , f ( a ) . f ( a ) . f ( a ) . f ( a ) > 0 f(a).f'(a).f''(a).f'''(a) > 0 .

That is just one equation. What about proving all real function that have a continuous third derivative satisfies this property?

Gia Hoàng Phạm - 2 years ago
Alex Burgess
May 21, 2019

f ( x ) = 0 f(x) = 0 satisfies this everywhere.

Moreover, if f ( x ) = g ( x ) f(x) = g(x) , such that g ( a ) g ( a ) g ( a ) > o r < 0 g'(a)g''(a)g'''(a) > or < 0 , you can choose f ( x ) = g ( x ) g ( a ) ± 1 f(x) = g(x) - g(a) \pm 1 to make the equation positive.

Huda Huda
Apr 1, 2020

e.g. f ( a ) = e a f(a)=e^a .

For a 0 a \geq 0 , f ( a ) . f ( a ) . f " ( a ) . f " ( a ) = ( e a ) ( e a ) ( e a ) ( e a ) 0 f(a).f'(a).f"(a).f'"(a)=(e^a)(e^a)(e^a)(e^a) \geq 0 .

For a < 0 -a < 0 , f ( a ) . f ( a ) . f " ( a ) . f " ( a ) = ( e a ) ( e a ) ( e a ) ( e a ) 0 f(a).f'(a).f"(a).f'"(a)=(e^{-a})(-e^{-a})(e^{-a})(-e^{-a}) \geq 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...