Get the value x + y x+y

x 3 + y 2 + x 2 y + x y = 91 x 4 + 2 x 2 y + y 2 = 169 \begin{aligned} x^3 + y^2 + x^2 y + xy & = & 91 \\ x^4 + 2x^2 y + y^2 &= & 169 \\ \end{aligned}

If positive integers x , y x,y satisfy the system of equations above, what is the value of x + y x+y ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Jubayer Nirjhor
Feb 3, 2014

x 4 + 2 x 2 y + y 2 = ( x 2 + y ) 2 = 169 = ( ± 13 ) 2 x 2 + y = ± 13 x^4+2x^2y+y^2=(x^2+y)^2=169=(\pm 13)^2 ~~~ \Longrightarrow ~ x^2+y=\pm 13 x 3 + y 2 + x 2 y + x y = ( x + y ) ( x 2 + y ) = ± 13 ( x + y ) = 91 x^3+y^2+x^2y+xy=(x+y)(x^2+y)=\pm 13(x+y)=91 x + y = ± 7 \therefore ~ x+y=\pm 7

There should be another last statement that x+y cannot be negative as they are positive integers. So, the answer is +7 or simply 7...

Deep Chatterjee - 6 years, 5 months ago

Never thought of that! Awesome!

Finn Hulse - 7 years, 4 months ago

its the same way that i did

Rishabh Jain - 7 years, 4 months ago
Oliver Welsh
Feb 4, 2014

First label the equations x 3 + y 2 + x 2 y + x y = 91 ( 1 ) x^3 + y^2 + x^2y + xy = 91 \quad (1) x 4 + 2 x 2 y + y 2 = 169 ( 2 ) x^4 + 2x^2y + y^2 = 169 \quad (2) We can factorize equation ( 1 ) (1) as x 3 + y 2 + x 2 y + x y = ( x 2 + y ) ( x + y ) = 91 ( 3 ) x^3 + y^2 + x^2y + xy = (x^2+y)(x+y) = 91 \quad (3) Similarly, equation ( 2 ) (2) gives x 4 + 2 x 2 y + y 2 = ( x 2 + y ) 2 = 169 x 2 + y = 13 ( 4 ) x^4 + 2x^2y + y^2 = (x^2 + y)^2 = 169 \Rightarrow x^2 + y = 13 \quad (4) Thus, substituting ( 4 ) (4) into ( 3 ) (3) gives 13 ( x + y ) = 91 x + y = 91 13 = 7 13*(x+y) = 91 \Rightarrow x+y = \frac{91}{13} = \fbox{7}

Vikram Pandya
Feb 3, 2014

( x , y ) = 2 , 9 , 3 , 4 (x,y) = {-2,9} , {3,4} If we assume x & y positive we have very simple way x 3 + y 2 + x 2 × y + x × y = 91 x^{3}+y^{2}+x^{2} \times y+x \times y=91 = ( x + y ) × ( x 2 + y ) = 91 (x+y) \times (x^{2}+y) = 91 ------- (1) the second term is ( x 2 + y ) 2 = 169 (x^{2}+y)^{2} = 169 ( x 2 + y ) = 13 (x^{2}+y)= 13 substituting in (1) we get ( x + y ) = 7 (x+y) = \boxed{7}

\­( 1+2\­)

Avisek Agarwal - 7 years, 4 months ago

yeah!!!!!!!!!!!!!!

yash gupta - 7 years, 4 months ago

Let x 2 = z x^2=z then we have the second equation: x 4 + 2 x 2 y + y 2 = z 2 + 2 z y + y 2 = ( z + y ) 2 = ( x 2 + y ) 2 = 1 3 2 x^4+2x^2y+y^2=z^2+2zy+y^2=(z+y)^2=(x^2+y)^2=13^2 So we get x 2 + y = 13 x^2+y=13 The first equation can be factored as follows: x 3 + y 2 + x 2 y + x y = x 3 + x y + x 2 y + y 2 = x ( x 2 + y ) + y ( x 2 + y ) = ( x 2 + y ) ( x + y ) = 91 x^3+y^2+x^2y+xy=x^3+xy+x^2y+y^2=x(x^2+y)+y(x^2+y)=(x^2+y)(x+y)=91 Observe that we have a factor of x 2 + y ) i n t h e f i r s t e q u a t i o n s o w e c a n s u b s t i t u t e i t s v a l u e i n t o t h e e q u a t i o n , w h i c h b e c o m e s : 13 ( x + y ) = 91 x^2+y)\ in \;the \;first\; equation \;so \;we\; can \;substitute \;its \;value \;into \;the \;equation,\;which \;becomes: 13(x+y)=91 x + y = 91 13 = 7 x+y=\frac{91}{13}=\boxed{7}

Prasun Biswas
Feb 8, 2014

Given that, x 3 + y 2 + x 2 y + x y = 91 x^3+y^2+x^2y+xy=91 ....(i) and x 4 + 2 x 2 y + y 2 = 169 x^4+2x^2y+y^2=169 .....(ii)

From (ii), we get,

x 4 + 2 x 2 y + y 2 = 169 x^4+2x^2y+y^2=169

( x 2 + y ) 2 = 169 x 2 + y = 13 [Neglecting (-13) as x,y are (+ve)] \implies (x^2+y)^2=169 \implies x^2+y=13 \text{[Neglecting (-13) as x,y are (+ve)]} ....(iii)

Now, from (iii), we get y = 13 x 2 y=13-x^2 and putting it in (i), we get ----

x 3 + ( 13 x 2 ) 2 + x 2 ( 13 x 2 ) + x ( 13 x 2 ) = 91 x^3+(13-x^2)^2+x^2(13-x^2)+x(13-x^2)=91

x 3 + 169 26 x 2 + x 4 + 13 x 2 x 4 + 13 x x 3 = 91 \implies x^3+169-26x^2+x^4+13x^2-x^4+13x-x^3=91

13 x 2 13 x 78 = 0 \implies 13x^2-13x-78=0

x 2 x 6 = 0 \implies x^2-x-6=0

( x 3 ) ( x + 2 ) = 0 x = 3 [Neglecting (-2) as x is (+ve)] \implies (x-3)(x+2)=0 \implies x=3 \text{[Neglecting (-2) as x is (+ve)]}

Putting x = 3 x=3 in (iii), we get----

y = 13 3 2 = 13 9 = 4 y=13-3^2=13-9=4 . Then, x + y = 3 + 4 = 7 x+y=3+4=\boxed{7}

Mohamed Elias
Feb 7, 2014
  • (x^(2) + y)(x + y) = 91 (1)
  • (x^(2)+ y)(x^(2) + y) = 169 (2)
  • from (2)
  • (x^(2)+y) = 13 (3) since x and y are positive
  • sub. from (3) to (1) thin
  • 13 * (x + y) = 91
  • (x + y) = 91/13 = 7

x 3 ^{3} +x 2 ^{2} y+y 2 ^{2} +xy=91

or, x 2 ^{2} (x+y)+y(y+x)=91

or, (x 2 ^{2} +y)(x+y)=91 - (i)

(x 2 ^{2} ) 2 ^{2} +2x 2 ^{2} y+y 2 ^{2} =169

or, (x 2 ^{2} +y) 2 ^{2} =169

or, x 2 ^{2} +y=13 -(ii)

from (i) and (ii) 13(x+y)=91 or, x+y=7

Ben Frankel
Feb 5, 2014

Notice that in x 4 + 2 x 2 y + y 2 = 169 = 1 3 2 x^4 + 2x^2y + y^2 = 169 = 13^2 , the LHS (left hand side) looks a lot like the familiar ( a + b ) 2 = a 2 + 2 a b + b (a + b)^2 = a^2 + 2ab + b . Thus we find the factorization:

x 4 + 2 x 2 y + y 2 = 1 3 2 ( x 2 + y ) 2 = 1 3 2 x 2 + y = 13 x^4 + 2x^2y + y^2 = 13^2 \:\to\: (x^2 + y)^2 = 13^2 \:\to\: x^2 + y = 13

Now we will try to factorize the first equation by grouping. Hopefully we will be able to get the expression x 2 + y x^2+y , since we know that this equals 13 13 . The first equation factorizes as so:

x 3 + y 2 + x 2 y + x y = ( x + y ) ( x 2 + y ) = ( x + y ) 13 = 91 x + y = 7 x^3 + y^2 + x^2y + xy = (x + y)(x^2 + y) = (x + y)13 = 91 \:\to\: x + y = \boxed{7}

And what a great coincidence, there is our solution!

Typo fix for the second line: ( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2 = a^2 + 2ab + b^2

Ben Frankel - 7 years, 4 months ago
Avisek Agarwal
Feb 3, 2014

x^3 + y^2 + x^2y + xy = 91

=>x^3 + x^2y + y^2 + xy = 91

=> x^2(x + y) + y(y + x) = 91

=>(x^2 + y)(x + y)=91.....equation 1

x^4 + 2x^2y + y^2 = 169

=> x^4 + x^2y + x^2y + y^2 = 169

=>x^2(x^2 + y) + y(x^2 + y) = 169

=> (x^2 + y)(x^2 + y) =169.....equation 1

Let x + y be A and x^2 + y be B .

so , BA= 91

B^2 = 169

B=13

Putting the value of B in equation 1

BA= 91

13A = 91

A=7 (x+y)

Finn Hulse
Feb 12, 2014

First, consider the first equation. The thing to note is that x cubed must be relatively small. In fact, we know that x must be less than 5, because otherwise x cubed will be 125, already larger than 91. If x is 4, that's also probably going to be too large, so we start by trying values with x as 3. Plugging in values, we see that the equation is satisfied if y equals 4. Another thing to note is that if x and y are even, then the expression is also even, so one's odd and one's even. But 3 + 4 is 7, the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...