Get this Sum

n = 0 2018 ( 2018 n ) \large \displaystyle \sum_{n=0}^{2018} \binom{2018}n

What is the last three digits of the sum above?

Notation : ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac{M!}{N!(M-N)!} denotes the binomial coefficient .

042 420 000 144

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Euler's Theorem

Let the sum be S S . We need to find S m o d 1000 S \bmod 1000 . By binomial theorem, we have S n = 0 2018 ( 2018 n ) 2 2018 (mod 1000) \displaystyle S \equiv \sum_{n=0}^{2018} \binom {2018}n \equiv 2^{2018} \text{ (mod 1000)} . Since gcd ( 2 , 1000 ) 1 \gcd(2,1000) \ne 1 , we have to consider the factors 2 3 = 8 2^3=8 and 5 3 = 125 5^3 = 125 of 1000 separately using Chinese remainder theorem.

Factor 8 : S 2 3028 0 (mod 8) S \equiv 2^{3028} \equiv 0 \text{ (mod 8)}

Factor 125 :

S 2 2018 m o d λ ( 1000 ) (mod 125) Since gcd ( 2 , 125 ) = 1 , Euler’s theorem applies. 2 2018 m o d 100 (mod 125) Carmichael lambda λ ( 1000 ) = 100 2 18 (mod 125) 2 2 × 7 + 4 (mod 125) ( 12 8 2 ) ( 16 ) (mod 125) ( 3 2 ) ( 16 ) (mod 125) 144 (mod 125) \begin{aligned} S & \equiv 2^{\color{#3D99F6}2018 \bmod \lambda(1000)} \text{ (mod 125)} & \small \color{#3D99F6} \text{Since }\gcd(2, 125) = 1 \text{, Euler's theorem applies.} \\ & \equiv 2^{\color{#3D99F6}2018 \bmod 100} \text{ (mod 125)} & \small \color{#3D99F6} \text{Carmichael lambda }\lambda (1000) = 100 \\ & \equiv 2^{18} \text{ (mod 125)} \\ & \equiv 2^{2\times 7+4} \text{ (mod 125)} \\ & \equiv (128^2)(16) \text{ (mod 125)} \\ & \equiv (3^2)(16) \text{ (mod 125)} \\ & \equiv 144 \text{ (mod 125)} \end{aligned}

Since 144 0 (mod 8) 144 \equiv 0 \text{ (mod 8)} , S 144 (mod 1000) S \equiv \boxed{144} \text{ (mod 1000)} .

Giorgos K.
May 2, 2018

30097557298197417800049182668952226601954645169633891463401117760245367082644152355564014438095421962150109895432272944128252155287648477680131934943095113263121691874508742328500559321036238322775864636883202538152031804102118831278605474474352011895348919417742923873371980983336517409056008233804190890418285814476821890492630167665485823056526646050928460488168341721716361299816947722947465808004305806687049198633489997459201469227952552870291934919760829984421958853221330987033580524592596407485826446284220272614663464267135596497185086055090126893989371261962903295313304735911034185619611156742144

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...