Get to the root of the problem

Calculus Level 4

{ f ( x ) = x x x 4 3 g ( x ) = x x x 5 4 3 \large \begin{cases} f(x)=\sqrt{\frac{x}{\sqrt[3]{\frac{x}{\sqrt[4]{\frac{x}{\ddots}}}}}} \\ g(x)=\sqrt{x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{\cdots}}}} \end{cases}

The functions f ( x ) f(x) and g ( x ) g(x) are defined for positive real numbers x x as above. What is the value of y y for which f ( y ) g ( y ) = 2016 f(y)g(y)=2016 ?

Give your answer as y \lfloor y \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 1102.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 11, 2016

Relevant wiki: Taylor Series - Problem Solving

Consider the following (J. R. Fielding, pers. comm., May 15, 2002) :

e = 1 + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + 1 5 ! + = 1 + 1 + 1 2 ( 1 + 1 3 ( 1 + 1 4 ( 1 + 1 5 ( 1 + ) ) ) ) x e 2 = x x x 5 4 3 g ( x ) = x e 2 \begin{aligned} e & = 1 + \frac 1{1!} + \frac 1{2!} + \frac 1{3!} + \frac 1{4!} + \frac 1{5!} + \cdots \\ & = 1+1+\frac 12 \left(1 +\frac 13 \left(1 + \frac 14 \left(1 + \frac 15 \bigg(1 + \cdots \bigg) \right) \right) \right) \\ x^{e-2} & = \sqrt{x\sqrt[3]{x\sqrt[4]{x\sqrt[5]{\cdots}}}} \\ \implies g(x) & = x^{e-2} \end{aligned}

Similarly, for f ( x ) f(x) :

1 e = 1 1 1 ! + 1 2 ! 1 3 ! + 1 4 ! 1 5 ! + = 1 2 ( 1 1 3 ( 1 1 4 ( 1 1 5 ( 1 ) ) ) ) x 1 e = x x x 4 3 f ( x ) = x 1 e \begin{aligned} \frac 1e & = 1 - \frac 1{1!} + \frac 1{2!} - \frac 1{3!} + \frac 1{4!} - \frac 1{5!} + \cdots \\ & = \frac 12 \left(1 -\frac 13 \left(1 - \frac 14 \left(1 - \frac 15 \bigg(1 - \cdots \bigg) \right) \right) \right) \\ x^\frac 1e & = \sqrt{\frac{x}{\sqrt[3]{\frac{x}{\sqrt[4]{\frac{x}{\ddots}}}}}} \\ \implies f(x) & = x^\frac 1e \end{aligned}

Therefore, we have:

f ( x ) g ( x ) = 2016 x 1 e + e 2 = 2016 ( 1 e + e 2 ) ln x = ln 2016 ln x = ln 2016 1 e + e 2 x 1102.446 x = 1102 \begin{aligned} f(x)g(x) & = 2016 \\ x^{\frac 1e + e-2} & = 2016 \\ \left( \frac 1e + e-2\right) \ln x & = \ln 2016 \\ \ln x & = \frac {\ln 2016}{\frac 1e + e-2} \\ \implies x & \approx 1102.446 \\ \lfloor x \rfloor & = \boxed{1102} \end{aligned}

@Chew-Seong Cheong Can you show why f ( x ) = x 1 e f(x) = x^\frac 1e . ? I mean just the summation which leads to 1/e.

Siva Bathula - 4 years, 11 months ago

Log in to reply

I have added a few lines to explain it.

Chew-Seong Cheong - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...