Gettin' Triggy With The Log

Geometry Level 1

If x ( 0 , π 2 ) x \in \left(0, \dfrac \pi 2 \right) , then solve:

log cos ( x ) sin ( x ) + log sin ( x ) cos ( x ) = 2 \large \log_{\cos(x)} \sin(x) + \log_{\sin(x)} \cos(x) = 2

π 4 \frac{\pi}{4} π 3 \frac{\pi}{3} π 6 \frac{\pi}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Sathvik Acharya
Apr 4, 2021

log cos x sin x + log sin x cos x = 2 log sin x log cos x + log cos x log sin x = 2 \begin{aligned} \large \log_{\cos x} \sin x+\log_{\sin x} \cos x&=\large 2 \\ \large \frac{\log {\sin x}}{\log {\cos x}}+\frac{\log {\cos x}}{\log {\sin x}}&=\large 2 \end{aligned} Applying the AM-GM inequality , log sin x log cos x + log cos x log sin x 2 log sin x log cos x log cos x log sin x = 2 \large \dfrac{\log {\sin x}}{\log {\cos x}}+\dfrac{\log {\cos x}}{\log {\sin x}}\ge 2\sqrt{\dfrac{\log {\sin x}}{\log {\cos x}}\cdot \dfrac{\log {\cos x}}{\log {\sin x}}}=2 From the equality condition of AM-GM inequality, we have, log sin x log cos x = log cos x log sin x ( log sin x ) 2 = ( log cos x ) 2 sin x = cos x \begin{aligned} \large \dfrac{\log {\sin x}}{\log {\cos x}}&=\large \dfrac{\log {\cos x}}{\log {\sin x}} \\ \large (\log {\sin x})^2&=\large (\log {\cos x})^2\\ \large \sin x &=\large \cos x \end{aligned} Therefore, 0 < x < π 2 x = π 4 0<x<\dfrac{\pi}{2}\implies x=\boxed{\dfrac{\pi}{4}}

Nice use of AM-GM, Sathvik!

tom engelsman - 2 months, 1 week ago

Log in to reply

Thank you. Your kind comments/ remarks are appreciated :)

Sathvik Acharya - 2 months, 1 week ago

Note: Both log cos x \log {\cos x} and log sin x \log {\sin x} are negative since sin x \sin x and cos x \cos x are less than 1 1 . This makes both log sin x log cos x \dfrac{\log {\sin x}}{\log {\cos x}} and log cos x log sin x \dfrac{\log {\cos x}}{\log {\sin x}} , positive which is a required condition for the application of AM-GM inequality.

Sathvik Acharya - 2 months, 1 week ago

Log in to reply

Both \log {\cos x}logcosx and \log {\sin x}logsinx are negative since \sin xsinx and \cos xcosx are less than 11. This makes both \dfrac{\log {\sin x}}{\log {\cos x}} logcosx logsinx ​
and \dfrac{\log {\cos x}}{\log {\sin x}} logsinx logcosx ​
, p

Studentbxt bxt - 1 week, 3 days ago

@Sathvik Acharya You are right, that's something to be kept in mind while using AM-GM inequality.

T C Adityaa - 1 month, 3 weeks ago

What is AM GM

Chikamso Okeru - 4 weeks ago

Log in to reply

The link leads to a wiki page which explains the inequality.

Sathvik Acharya - 3 weeks, 2 days ago

Can also be done using log properties and quadratic equations

Rakhi Bandyopadhyay - 3 weeks, 4 days ago

Tapping archive set desksboard created

NORAZIZ AROB - 2 weeks ago

Both \log {\cos x}logcosx and \log {\sin x}logsinx are negative since \sin xsinx and \cos xcosx are less than 11. This makes both \dfrac{\log {\sin x}}{\log {\cos x}} logcosx logsinx ​
and \dfrac{\log {\cos x}}{\log {\sin x}} logsinx logcosx ​
, p

Studentbxt bxt - 1 week, 3 days ago
Mark Hennings
Apr 5, 2021

Since log a b = ( log b a ) 1 \log_ab = (\log_ba)^{-1} , we are solving u + u 1 = 2 u + u^{-1} = 2 , where u = log sin x cos x u=\log_{\sin x}{\cos x} , and hence log sin x cos x = u = 1 \log_{\sin x}\cos x = u = 1 , and hence sin x = cos x \sin x = \cos x , and hence x = 1 4 π x = \boxed{\tfrac14\pi} for x ( 0 , 1 2 π ) x \in (0,\tfrac12\pi) .

log cos ( x ) sin ( x ) + log sin ( x ) cos ( x ) = 2 \log_{\cos(x)}\sin\left(x\right)+\log_{\sin(x)}\cos\left(x\right)=2 ln sin ( x ) ln cos ( x ) + ln cos ( x ) ln sin ( x ) = 2 \frac{\ln\sin\left(x\right)}{\ln\cos\left(x\right)}+\frac{\ln\cos\left(x\right)}{\ln\sin\left(x\right)}=2 ( ln sin ( x ) ) 2 + ( ln cos ( x ) ) 2 ln cos ( x ) ln sin ( x ) = 2 \frac{\left(\ln\sin\left(x\right)\right)^{2}+\left(\ln\cos\left(x\right)\right)^{2}}{\ln\cos\left(x\right)\ln\sin\left(x\right)}=2 (neither cos ( x ) \cos(x) nor sin ( x ) \sin(x) is zero given that the equation's domain excludes 0 and π 2 \frac{\pi}{2} ) ( ln sin ( x ) ) 2 2 ln cos ( x ) ln sin ( x ) + ( ln cos ( x ) ) 2 = 0 \left(\ln\sin\left(x\right)\right)^{2}-2\ln\cos\left(x\right)\ln\sin\left(x\right)+\left(\ln\cos\left(x\right)\right)^{2}=0 ( ln sin ( x ) ln cos ( x ) ) 2 = 0 \left(\ln\sin\left(x\right)-\ln\cos\left(x\right)\right)^{2}=0 ln sin ( x ) = ln cos ( x ) \ln\sin\left(x\right)=\ln\cos\left(x\right) sin ( x ) = cos ( x ) \sin\left(x\right)=\cos\left(x\right) x = π 4 \boxed{x=\frac{\pi}{4}} for the interval x ( 0 , π 2 ) x \in (0, \frac{\pi}{2})

Mohibul Hoque
Apr 25, 2021

Log sinx +log cosx=2 cosx sinx I assumed that both of the terms in left side is equal to 1. So that 1+1 =2.

As we know logx(basex)=1. So sinx=cosx It is true for only one value of x in (0,90)

So, x=45 i.e. pi/4.

Tony Matar
May 8, 2021

We know already two things : 1)Loga(b)=ln(b)/ln(a)

2) sin(pi/4)=cos(pi/4) so for x=pi/4 we have a=b

Therefore We can turn this equation (for x=pi/4) into : Loga(a)+Loga(a)=1+1=2 Therefore x must be equal to pi/4 mod(2pi)

Hanif Kurniawan
Apr 11, 2021

log(cosx) sinx + log(sinx) cosx = 2 log(cosx) sinx + 1/[log(cosx) sinx] = 2 === say log(cosx) sinx = p ==== p + 1/p = 2 ==========×p p²-2p+1=0 (p-1)²=0 p=1 log(cosx) sinx =1 sin x = cos x ¹ x= 45°

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...