Getting tired of these yet?

Calculus Level 3

Find the arc length of the following curve from t = 10 t=-10 to t = 10 t=10 :

x = 20 29 ln ( t + 1 + t 2 ) 21 29 1 + t 2 x=\frac{20}{29}\ln(t+\sqrt{1+t^2})-\frac{21}{29}\sqrt{1+t^2}

y = 20 29 1 + t 2 + 21 29 ln ( t + 1 + t 2 ) y=\frac{20}{29}\sqrt{1+t^2}+\frac{21}{29}\ln(t+\sqrt{1+t^2})


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

ChengYiin Ong
Jan 18, 2021

We have x ( t ) = 20 29 sinh 1 t 21 29 1 + t 2 x ( t ) = 20 21 t 29 1 + t 2 x(t)=\frac{20}{29}\sinh^{-1} t-\frac{21}{29} \sqrt{1+t^2} \implies x'(t)=\frac{20-21t}{29\sqrt{1+t^2}} y ( t ) = 20 29 1 + t 2 + 21 29 sinh 1 t y ( t ) = 21 + 20 t 29 1 + t 2 . y(t)=\frac{20}{29}\sqrt{1+t^2}+\frac{21}{29}\sinh^{-1} t \implies y'(t)=\frac{21+20t}{29\sqrt{1+t^2}}. So, the arc length is given by 10 10 [ x ( t ) ] 2 + [ y ( t ) ] 2 d t = 10 10 ( 20 21 t 29 1 + t 2 ) 2 + ( 21 + 20 t 29 1 + t 2 ) 2 = 10 10 2 0 2 + 2 1 2 2 9 2 d t = 10 10 1 d t = 20 . \int_{-10}^{10} \sqrt{[x'(t)]^2+[y'(t)]^2} \, dt = \int_{-10}^{10} \sqrt{\left(\frac{20-21t}{29\sqrt{1+t^2}}\right)^2+\left(\frac{21+20t}{29\sqrt{1+t^2}}\right)^2}=\int_{-10}^{10} \sqrt{\frac{20^2+21^2}{29^2}} \, dt=\int_{-10}^{10} 1 \,dt=\boxed{20}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...