Getting to the root of the problem

Algebra Level 3

x = 5 25 125 625 6 5 4 3 \large x = \sqrt{5\sqrt[3]{25\sqrt[4]{125\sqrt[5]{625\sqrt[6]{\cdots}}}}}

Find x x


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jack Rawlin
Mar 19, 2016

x = 5 25 125 625 6 5 4 3 \large x = \sqrt{5\sqrt[3]{25\sqrt[4]{125\sqrt[5]{625\sqrt[6]{\cdots}}}}}

x = x \large x = x

x = x 2 \large x = \sqrt{x^2}

x = x x \large x = \sqrt{x \cdot x}

x = x x 3 3 \large x = \sqrt{x\sqrt[3]{x^3}}

x = x x 2 x 3 \large x = \sqrt{x\sqrt[3]{x^2 \cdot x}}

x = x x 2 x 4 4 3 \large x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^4}}}

x = x x 2 x 3 x 4 3 \large x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3 \cdot x}}}

x = x x 2 x 3 x 5 5 4 3 \large x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3\sqrt[5]{x^5}}}}

x = x x 2 x 3 x 4 x 5 4 3 \large x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3\sqrt[5]{x^4 \cdot x}}}}

x = x x 2 x 3 x 4 x 6 6 5 4 3 \large x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3\sqrt[5]{x^4\sqrt[6]{x^6}}}}}

x = x x 2 x 3 x 4 6 5 4 3 \large x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3\sqrt[5]{x^4\sqrt[6]{\cdots}}}}}

5 25 125 625 6 5 4 3 = x = x x 2 x 3 x 4 6 5 4 3 \large \sqrt{5\sqrt[3]{25\sqrt[4]{125\sqrt[5]{625\sqrt[6]{\cdots}}}}} = x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3\sqrt[5]{x^4\sqrt[6]{\cdots}}}}}

5 5 2 5 3 5 4 6 5 4 3 = x = x x 2 x 3 x 4 6 5 4 3 \large \sqrt{5\sqrt[3]{5^2\sqrt[4]{5^3\sqrt[5]{5^4\sqrt[6]{\cdots}}}}} = x = \sqrt{x\sqrt[3]{x^2\sqrt[4]{x^3\sqrt[5]{x^4\sqrt[6]{\cdots}}}}}

From observation we can determine that x = 5 \large \boxed{x = 5}

If I'm not mistaken, the limit of the expression does not converge because the exponent of 5 turns out to be the harmonic series.

James Wilson - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...