Ghany's sum

Calculus Level 5

What is the value of n = 1 ( 2 n 1 ) 4 n = 1 ( 2 n ) 4 ? \frac {\sum\limits_{n=1}^{\infty}(2n-1)^{-4}} {\sum\limits_{n=1}^{\infty}(2n)^{-4}} ?

This problem is shared by Ghany M. from his math teacher, Dr. Tedy Setiawan.


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Parth Thakkar
Oct 14, 2013

Denote the numerator sum as S S and denominator as T T . So,

S = 1 1 4 + 1 3 4 + 1 5 4 + T = 1 2 4 + 1 4 4 + 1 6 4 + = 1 2 4 ( 1 + 1 2 4 + 1 3 4 + ) = 1 2 4 ( T + S ) \begin{aligned} S &= \dfrac{1} {1^4} + \dfrac{1} {3^4} + \dfrac{1} {5^4} + \ldots \\ T &= \dfrac{1} {2^4} + \dfrac{1} {4^4} + \dfrac{1} {6^4} + \ldots \\ &= \dfrac{1} {2^4} \left( 1 + \dfrac{1} {2^4} + \dfrac{1} {3^4} + \ldots \right) \\ &= \dfrac{1} {2^4} \left( T + S \right) \end{aligned} .

Solving for S T \dfrac S T gives the answer: 15 15 .

Great. Defining S S and T T makes it easier for us to play around with the sequences.

Calvin Lin Staff - 7 years, 7 months ago

You have thought very well...wonderful approach

S Aditya - 4 years, 4 months ago
Vijay Raghavan
Oct 14, 2013

Let Q = n = 1 1 ( 2 n ) 4 Q= \sum_{n=1}^{\infty} \dfrac{1}{(2n)^4}

Let P = n = 1 1 ( 2 n 1 ) 4 P=\sum_{n=1}^{\infty} \dfrac{1}{(2n-1)^4}

Observe that ( P + Q ) 1 2 4 = Q (P+Q) \cdot \dfrac{1}{2^4}= Q

which gives us, P + Q = 16. Q P+Q=16.Q

So, P Q = 15 \dfrac{P}{Q}=15

thnx nice one!

Jun Das - 7 years, 7 months ago
Shreyas S K
Oct 15, 2013

n = 1 ( 2 n 1 ) 4 n = 1 ( 2 n ) 4 \frac{\sum \limits_{n=1}^{\infty} (2n-1)^{-4}}{\sum \limits_{n=1}^{\infty} (2n)^{-4}}

= n = 1 ( 2 n 1 ) 4 + n = 1 ( 2 n ) 4 n = 1 ( 2 n ) 4 n = 1 ( 2 n ) 4 = \frac{\sum \limits_{n=1}^{\infty} (2n-1)^{-4} +\sum \limits_{n=1}^{\infty} (2n)^{-4}-\sum \limits_{n=1}^{\infty} (2n)^{-4}}{\sum \limits_{n=1}^{\infty} (2n)^{-4}} ( On Adding and subtracting the denominator in the numerator )

= n = 1 ( n ) 4 + n = 1 ( 2 n ) 4 n = 1 ( 2 n ) 4 =\frac{\sum \limits_{n=1}^{\infty} (n)^{-4} +-\sum \limits_{n=1}^{\infty} (2n)^{-4}}{\sum \limits_{n=1}^{\infty} (2n)^{-4}}

= n = 1 ( n ) 4 n = 1 ( 2 n ) 4 1 = \frac{\sum \limits_{n=1}^{\infty} (n)^{-4}}{\sum \limits_{n=1}^{\infty} (2n)^{-4}} -1

= n = 1 ( n ) 4 2 4 n = 1 ( n ) 4 1 = \frac{\sum \limits_{n=1}^{\infty} (n)^{-4}}{2^{-4}\sum \limits_{n=1}^{\infty} (n)^{-4}} -1

= 1 2 4 1 = \frac{1}{2^{-4}} -1

= 2 4 1 = 15 =2^{4} -1 = 15

Nice approach!

Calvin Lin Staff - 7 years, 7 months ago

Log in to reply

Thank You

shreyas S K - 7 years, 7 months ago
Albert Han
Dec 17, 2013

First, let n = 1 ( 2 n 1 ) 4 = x \sum_{n=1}^\infty (2n-1)^{-4} = x , and n = 1 ( 2 n ) 4 = y \sum_{n=1}^\infty (2n)^{-4} = y .

Then, we can say for y y that

y = n = 1 1 ( 2 n ) 4 = 1 16 n = 1 1 n 4 y = \sum_{n=1}^\infty \frac {1} {(2n)^{4}} = \frac {1} {16} \sum_{n=1}^\infty \frac {1} {n^{4}} .

Then, since

n = 1 1 n 4 = x + y \sum_{n=1}^\infty \frac {1} {n^{4}} = x + y ,

we can also say that

x = n = 1 1 n 4 y x=\sum_{n=1}^\infty \frac {1} {n^{4}} - y .

Then, the fraction of the question can be changed into

x y = n = 1 1 n 4 y 1 16 n = 1 1 n 4 \frac {x} {y} = \frac {\sum_{n=1}^\infty \frac {1} {n^{4}} - y} {\frac {1} {16} \sum_{n=1}^\infty \frac {1} {n^{4}}} .

Then, we can simplify this equation into

x y = n = 1 1 n 4 1 16 n = 1 1 n 4 1 \frac {x} {y} = \frac {\sum_{n=1}^\infty \frac {1} {n^{4}}} {\frac {1} {16} \sum_{n=1}^\infty \frac {1} {n^{4}}} -1 .

Then, the answer comes out to be

16 1 = 15 16 - 1 = \boxed {15} .

Adithyan Rk
Oct 15, 2013

n = 1 n \sum_{n=1}^n {2n-1} = n = 1 n n = 1 n / 2 \sum_{n=1}^n - \sum_{n=1}^{n/2} 2n

(Notice that, the limits for the second term (i.e, for n = 1 n / 2 \sum_{n=1}^{n/2} 2n) goes up till n/2)

Here the number of terms is infinite and thus, half the number will also be infinite.

Therefore we can write

n = 1 ( 2 n 1 ) 4 \sum_{n=1}^{\infty} \ (2n-1)^{-4} = n = 1 ( n ) 4 n = 1 ( 2 n ) 4 \sum_{n=1}^{\infty} \ (n)^{-4} - \sum_{n=1}^{\infty} \ (2n)^{-4}

= n = 1 ( n ) 4 ( 2 n ) 4 = n = 1 ( 15 / 16 ) ( n ) 4 =\sum_{n=1}^{\infty} \ (n)^{-4} - (2n)^{-4} = \sum_{n=1}^{\infty} \ (15/16)(n)^{-4}

Substituting the value of n = 1 ( 2 n 1 ) 4 \sum_{n=1}^{\infty} \ (2n-1)^{-4} in the expression given in the question, we get

n = 1 ( 15 / 16 ) ( n ) 4 n = 1 ( 1 / 16 ) ( n ) 4 \frac{\sum_{n=1}^{\infty} \ (15/16)(n)^{-4}}{ \sum_{n=1}^{\infty} (1/16)(n)^{-4}}

= 15 =15

Ashutosh Sharma
Jan 27, 2018

Ashish Pathak
Oct 26, 2013

to the above expression add 1 and subtract 1.. hence the expression becomes sigma(n^-4)\sigma((2n)^-4)...fot n=1 to infinite..taking 2^-4 from the denominator ....numerator becomes equal to denominator.. as n goes to infinite... thus we get 1\2^-4 -1 =16-1=15

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...