Ghetto Stirling Approximation?

Calculus Level 2

Determine the value of 1000 a \lfloor{1000a}\rfloor

where a = lim x x x + 0.5 x ! e x a = \displaystyle\lim_{x\rightarrow \infty} \frac{x^{x+0.5}}{x!e^{x}}


The answer is 398.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Sep 15, 2018

Use Stirling's Formula, n ! 2 π n ( n e ) n n! \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^n .

So lim x x x + 0.5 x ! e x \displaystyle\lim_{x\rightarrow \infty} \frac{x^{x+0.5}}{x!e^{x}}

= lim x x x + 0.5 e x 2 π x ( x e ) x =\displaystyle\lim_{x\rightarrow \infty} \frac{x^{x+0.5}}{e^x\sqrt{2 \pi x}\left(\frac{x}{e}\right)^x}

= 1 2 π 0.3989... =\dfrac1{\sqrt{2\pi}}\approx 0.3989...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...