Giant expression

Algebra Level 4

1 a + 1 b + 1 c + 1 d + 1 e + 1 f 1 1 a + 1 b + 1 c + 1 1 b + 1 c + 1 d + 1 1 c + 1 d + 1 e + 1 1 d + 1 e + 1 f + 1 1 e + 1 f + 1 a + 1 1 f + 1 a + 1 b \large \frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}{\frac{1}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}+\frac{1}{\frac{1}{c}+\frac{1}{d}+\frac{1}{e}}+\frac{1}{\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}+\frac{1}{\frac{1}{e}+\frac{1}{f}+\frac{1}{a}}+\frac{1}{\frac{1}{f}+\frac{1}{a}+\frac{1}{b}}}

Let a a , b b , c c , d d , e e , and f f be positive real numbers such that a b c d e f = 1 abcdef=1 . Find the minimum value of expression above.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Skye Rzym
May 22, 2017

With AM-GM-HM, we have 1 a + 1 b + 1 c 3 1 a 1 b 1 c 3 \frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{3}\geq\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}} = 1 a b c 3 =\sqrt[3]{\frac{\color{#3D99F6}{1}}{abc}} = a b c d e f a b c 3 =\sqrt[3]{\frac{\color{#3D99F6}{abcdef}}{abc}} = d e f 3 3 1 d + 1 e + 1 f ( 1 ) =\sqrt[3]{def}\geq\frac{3}{\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}\cdots(1) Similarly, we get 1 b + 1 c + 1 d 3 3 1 e + 1 f + 1 a ( 2 ) \frac{\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}{3}\geq\frac{3}{\frac{1}{e}+\frac{1}{f}+\frac{1}{a}}\cdots(2) 1 c + 1 d + 1 e 3 3 1 f + 1 a + 1 b ( 3 ) \frac{\frac{1}{c}+\frac{1}{d}+\frac{1}{e}}{3}\geq\frac{3}{\frac{1}{f}+\frac{1}{a}+\frac{1}{b}}\cdots(3) 1 d + 1 e + 1 f 3 3 1 a + 1 b + 1 c ( 4 ) \frac{\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}{3}\geq\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\cdots(4) 1 e + 1 f + 1 a 3 3 1 b + 1 c + 1 d ( 5 ) \frac{\frac{1}{e}+\frac{1}{f}+\frac{1}{a}}{3}\geq\frac{3}{\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}\cdots(5) 1 f + 1 a + 1 b 3 3 1 c + 1 d + 1 e ( 6 ) \frac{\frac{1}{f}+\frac{1}{a}+\frac{1}{b}}{3}\geq\frac{3}{\frac{1}{c}+\frac{1}{d}+\frac{1}{e}}\cdots(6) By adding ( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) + ( 5 ) + ( 6 ) (1)+(2)+(3)+(4)+(5)+(6) , we get 1 a + 1 b + 1 c + 1 d + 1 e + 1 f 3 1 a + 1 b + 1 c + 3 1 b + 1 c + 1 d + 3 1 c + 1 d + 1 e + 3 1 d + 1 e + 1 f + 3 1 e + 1 f + 1 a + 3 1 f + 1 a + 1 b \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\frac{1}{f}\geq\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{3}{\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}+\frac{3}{\frac{1}{c}+\frac{1}{d}+\frac{1}{e}}+\frac{3}{\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}+\frac{3}{\frac{1}{e}+\frac{1}{f}+\frac{1}{a}}+\frac{3}{\frac{1}{f}+\frac{1}{a}+\frac{1}{b}} 1 a + 1 b + 1 c + 1 d + 1 e + 1 f 1 1 a + 1 b + 1 c + 1 1 b + 1 c + 1 d + 1 1 c + 1 d + 1 e + 1 1 d + 1 e + 1 f + 1 1 e + 1 f + 1 a + 1 1 f + 1 a + 1 b 3 \frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}{\frac{1}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}+\frac{1}{\frac{1}{c}+\frac{1}{d}+\frac{1}{e}}+\frac{1}{\frac{1}{d}+\frac{1}{e}+\frac{1}{f}}+\frac{1}{\frac{1}{e}+\frac{1}{f}+\frac{1}{a}}+\frac{1}{\frac{1}{f}+\frac{1}{a}+\frac{1}{b}}}\geq\boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...