GIF

Calculus Level 3

M = n = 1 40 n 2 2 \large M= \sum_{n=1}^{40} \left \lfloor \frac{n^2}{2} \right \rfloor

Find the sum M M above.

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 11060.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marta Reece
Jun 1, 2017

Sum of the even terms:

S e v e n = m = 1 20 ( 2 m ) 2 2 = m = 1 20 4 m 2 2 = m = 1 20 2 m 2 = m = 1 20 2 m 2 = 2 m = 1 20 m 2 = 2 ( 2 0 3 3 + 2 0 2 2 + 20 6 ) = 5740 S_{even}= \sum_{m=1}^{20} \left \lfloor \frac{(2m)^2}{2} \right \rfloor= \sum_{m=1}^{20} \left \lfloor \frac{4m^2}{2} \right \rfloor =\sum_{m=1}^{20} \left \lfloor 2m^2 \right \rfloor =\sum_{m=1}^{20} 2m^2 =2\sum_{m=1}^{20} m^2 =2\left(\frac{20^3}{3}+\frac{20^2}{2}+\frac{20}{6}\right)=5740

Sum of the odd terms:

S o d d = m = 1 20 ( 2 m 1 ) 2 2 = m = 1 20 4 m 2 4 m + 1 2 = m = 1 20 2 m 2 2 m + 1 2 = m = 1 20 ( 2 m 2 2 m ) = 5740 2 m = 1 20 m = S_{odd}=\sum_{m=1}^{20} \left \lfloor \frac{(2m-1)^2}{2} \right \rfloor= \sum_{m=1}^{20} \left \lfloor \frac{4m^2-4m+1}{2} \right \rfloor =\sum_{m=1}^{20} \left \lfloor 2m^2 -2m +\frac{1}{2} \right \rfloor =\sum_{m=1}^{20} (2m^2-2m) =5740-2\sum_{m=1}^{20} m =

= 5740 2 ( 2 0 2 2 + 20 2 ) = 5740 2 × 210 = 5320 =5740-2\left(\frac{20^2}{2}+\frac{20}{2}\right)=5740-2\times210=5320

Overall sum is a sum of the even and the odd:

M = S e v e n + S o d d = 5740 + 5320 = 11060 M=S_{even}+S_{odd}=5740+5320=\boxed{11060}

Similar solution with @Marta Reece 's

M = n = 1 40 n 2 2 = k = 1 20 ( 2 k ) 2 2 n = 2 k even + k = 0 19 ( 2 k + 1 ) 2 2 n = 2 k + 1 odd Note that ( 2 ( 0 ) + 1 ) 2 2 = 0 = k = 1 20 2 k 2 + k = 1 19 2 k 2 + 2 k + 1 2 = k = 1 20 2 k 2 + k = 1 19 ( 2 k 2 + 2 k ) = 2 ( 20 ) ( 21 ) ( 41 ) 6 + 2 ( 19 ) ( 20 ) ( 39 ) 6 + 2 ( 19 ) ( 20 ) 2 = 5740 + 4940 + 380 = 11060 \begin{aligned} M & = \sum_{n=1}^{40} \left \lfloor \frac {n^2}2 \right \rfloor \\ & = \underbrace{\sum_{k=1}^{20} \left \lfloor \frac {(2k)^2}2 \right \rfloor}_{n = 2k \text{ even}} + \underbrace{\sum_{\color{#3D99F6}k=0}^{19} \left \lfloor \frac {(2k+1)^2}2 \right \rfloor}_{n = 2k+1 \text{ odd}} & \small \color{#3D99F6} \text{Note that } \left \lfloor \frac {(2{\color{#D61F06}(0)}+1)^2}2 \right \rfloor = \color{#D61F06}0 \\ & = \sum_{k=1}^{20} \left \lfloor 2k^2 \right \rfloor + \sum_{\color{#D61F06}k=1}^{19} \left \lfloor 2k^2 + 2k + \frac 12 \right \rfloor \\ & = \sum_{k=1}^{20} 2k^2 + \sum_{k=1}^{19} \left(2k^2 + 2k\right) \\ & = \frac {2(20)(21)(41)}6 + \frac {2(19)(20)(39)}6 + \frac {2(19)(20)}2 \\ & = 5740 + 4940 + 380 \\ & = \boxed{11060} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...