All Obtained Different Results? Who's Right?

Geometry Level 3

Students Michaelle, Maeve, Barbara and Antony, are asked to solve the equation 2 sin x + cos x 1 = 0 2\sin x +\cos x -1=0 . Who solved it correctly?

  • Michaelle found as the solution set S = { 2 k π , arccos ( 3 5 ) + 2 k π } \\\displaystyle S=\left \{ 2k\pi ,\,\arccos\left ( -\frac{3}{5} \right )+2k\pi \right \}
  • Maeve found S = { 2 k π , π arcsin 4 5 + 2 k π } \\\displaystyle S=\left \{ 2k\pi ,\pi-\arcsin \frac{4}{5} +2k\pi \right \}
  • Barbara found S = { 2 k π , 2 arctan 2 + 2 k π } \\\displaystyle S=\left \{ 2k\pi ,2\arctan2 +2k\pi \right \}
  • Antony found S = { 2 k π , π 2 arcsin 5 5 + 2 k π } \\\displaystyle S=\left \{ 2k\pi ,\pi - 2\arcsin\frac{\sqrt{5}}{5} +2k\pi \right \}
Barbara All of these Antony Michaelle Maeve

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryaman Maithani
Jul 10, 2018

2 sin x + cos x = 1 2\sin x + \cos x = 1

2 5 sin x + 1 5 cos x = 1 5 \implies \dfrac{2}{\sqrt{5}}\sin x + \dfrac{1}{\sqrt{5}}\cos x = \dfrac{1}{\sqrt{5}}

Writing 2 5 as cos α sin α = 1 5 \dfrac{2}{\sqrt{5}} \text{ as }\cos \alpha \implies \sin \alpha = \dfrac{1}{\sqrt{5}}

cos α sin x + sin α cos x = sin α \therefore \cos \alpha \sin x + \sin \alpha \cos x = \sin \alpha

sin ( x + α ) = sin α \implies \sin(x + \alpha) = \sin \alpha

x + α = n π + ( 1 ) n α \implies x + \alpha = n\pi + (-1)^n \alpha


Case 1:

If n = 2 k , k Z : n = 2k, k \in \mathbb{Z}:

x = 2 k π x = 2k\pi


Case 2:

If n = 2 k + 1 , k Z : n = 2k+1, k \in \mathbb{Z}:

x = 2 k π + π 2 α x = 2k\pi + \pi - 2\alpha

Now, we have to verify the alternate forms of π 2 α \pi - 2\alpha according to the choices given.

We can directly see that Antony is correct \boxed{\text{Antony is correct}} as sin α = 1 5 α = arcsin 5 5 \sin \alpha = \dfrac{1}{\sqrt{5}} \iff \alpha = \arcsin \dfrac{\sqrt{5}}{5}

We also know that:

tan α = sin α cos α = 1 2 cot α = 2 \tan \alpha = \dfrac{\sin\alpha}{\cos\alpha} = \dfrac{1}{2} \implies \cot \alpha = 2

α = arccot 2 = π 2 arctan 2 π 2 α = 2 arctan 2 \implies \alpha = \text{arccot } 2 = \dfrac{\pi}{2} - \arctan 2 \implies \pi - 2\alpha = 2\arctan 2

Barbara is also correct . \therefore \boxed{\text{Barbara is also correct}}.

sin 2 α = 2 sin α cos α = 2 2 5 1 5 = 4 5 \sin 2\alpha = 2\sin\alpha\cos\alpha = 2\cdot\dfrac{2}{\sqrt{5}}\cdot\dfrac{1}{\sqrt{5}} = \dfrac{4}{5}

2 α = arcsin 4 5 π 2 α = π arcsin 4 5 \implies 2\alpha = \arcsin\dfrac{4}{5} \iff \pi - 2\alpha =\pi - \arcsin\dfrac{4}{5}

Maeve is also correct . \therefore \boxed{\text{Maeve is also correct}}.

Also,

π arcsin 4 5 = β (let) \pi - \arcsin\dfrac{4}{5} = \beta \text{(let)}

(As arcsin ( x ) [ 0 , π 2 ] f o r x > 0 , β must be an obtuse angle. \arcsin(x) \in [0, \dfrac{\pi}{2}] for x > 0, \beta \text{ must be an obtuse angle.} )

sin ( π arcsin 4 5 ) = sin β \sin\Bigg(\pi - \arcsin\dfrac{4}{5}\Bigg) = \sin\beta

sin β = 4 5 \implies \sin\beta = \dfrac{4}{5}

cos β = 3 5 ( β is an obtuse angle, its cosine is negative.) \implies \cos\beta = -\dfrac{3}{5} \hspace{3 cm}(\because \beta \text{ is an obtuse angle, its cosine is negative.)}

β = arccos ( 3 5 ) \implies \beta = \arccos \Bigg(-\dfrac{3}{5}\Bigg)

Michaelle is also correct . \therefore \boxed{\text{Michaelle is also correct}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...