Give me a five!

Algebra Level 4

x = 1 1 + 2 + 1 3 + 4 + 1 5 + 6 + + 1 99 + 100 x=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\dots+\frac{1}{\sqrt{99}+\sqrt{100}}

What do we know about x x in the equation above?

\quad A: x = 5 \ x=5

\quad B: x < 5 \ x<5

\quad C: x > 5 \ x>5

B A C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Áron Bán-Szabó
Jun 22, 2017

1 1 + 2 + 1 3 + 4 + 1 5 + 6 + + 1 99 + 100 = A \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\dots+\frac{1}{\sqrt{99}+\sqrt{100}}=A

( 1 0 + 1 + 1 1 + 2 ) + ( 1 2 + 3 + 1 3 + 4 ) + + ( 1 98 + 99 + 1 99 + 100 ) = B (\frac{1}{\sqrt{0}+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}})+(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}})+\dots+(\frac{1}{\sqrt{98}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{100}})=B

It is easy to see that

1 0 + 1 > 1 1 + 2 > > 1 99 + 100 \frac{1}{\sqrt{0}+\sqrt{1}}>\frac{1}{\sqrt{1}+\sqrt{2}}>\dots>\frac{1}{\sqrt{99}+\sqrt{100}}

From these we get: B > 2 A . B>2A.

By calculating we get:

B = 1 + ( 2 1 ) + ( 3 2 ) + + ( 100 + 99 ) = 10 B=\sqrt{1}+(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+\dots+(\sqrt{100}+\sqrt{99})=10

So A < B 2 = 5 A<\frac{B}{2}=5 .

Sándor Daróczi
Jun 21, 2017

By the concavity of the x \sqrt{x} function (since ( x ) = 1 4 x 3 2 < 0 (\sqrt{x})'' = - \frac {1}{4x^{\frac {3}{2}}} < 0 for x 0 x \geq 0 ) we have 2 k 1 > 2 k + 2 k 2 2 \sqrt{2k-1} > \frac {\sqrt{2k} + \sqrt{2k-2}}{2} or 2 k 2 k 1 < 2 k 1 2 k 2 \sqrt{2k} - \sqrt{2k-1} < \sqrt{2k-1} - \sqrt{2k-2} for all k 1 k \geq 1 , so we can derive the following:

2 x = 2 k = 1 50 1 2 k 1 + 2 k = 2 k = 1 50 2 k 2 k 1 ( 2 k 1 + 2 k ) ( 2 k 2 k 1 ) = 2 k = 1 50 2 k 2 k 1 2 k ( 2 k 1 ) = 2x = 2\displaystyle \sum_{k=1}^{50} \frac {1}{\sqrt{2k-1} + \sqrt{2k}} = 2\displaystyle \sum_{k=1}^{50} \frac {\sqrt{2k} - \sqrt{2k-1}}{(\sqrt{2k-1} + \sqrt{2k})(\sqrt{2k} - \sqrt{2k-1})} = 2\displaystyle \sum_{k=1}^{50} \frac {\sqrt{2k} - \sqrt{2k-1}}{2k - (2k-1)} =

= 2 k = 1 50 2 k 2 k 1 < k = 1 50 2 k 2 k 1 + k = 1 50 2 k 1 2 k 2 = = 2\displaystyle \sum_{k=1}^{50} \sqrt{2k} - \sqrt{2k-1} < \displaystyle \sum_{k=1}^{50} \sqrt{2k} - \sqrt{2k-1} + \displaystyle \sum_{k=1}^{50} \sqrt{2k-1} - \sqrt{2k-2} =

= k = 1 100 k k 1 = 100 0 = 10 = \displaystyle \sum_{k=1}^{100} \sqrt{k} - \sqrt{k-1} = \sqrt{100} - \sqrt{0} = 10

Hence x < 5 x < 5 .

Just for the record, Wolfram-alpha gives the sum from n = 1 to n = 50 of (sqrt(2n) - sqrt(2n - 1)) is app. 4.632395109272. Ed Gray

Edwin Gray - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...