Given Ratio, Find Sum

Geometry Level 4

For a triangle A B C ABC , it is given that [ A B C ] R = 4 \dfrac{[\triangle ABC]}{R}=4 .

Find a cos A + b cos B + c cos C a\cos A+b\cos B+c\cos C .

Note : R R is circumradius of triangle A B C ABC and [ A B C ] [\triangle ABC] is the area of triangle A B C ABC .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 6, 2015

c y c a cos A = c y c 2 R sin A cos A = R c y c sin 2 A = 4 R c y c sin A ( 1 ) [ A B C ] R = 4 a b c 4 R 2 = 4 8 R 3 c y c sin A = 16 R 2 c y c sin A = 2 R ( 2 ) \sum_{cyc} a\cos A = \sum_{cyc} 2R\sin A\cos A = R\sum_{cyc} \sin 2A =4R \prod_{cyc} \sin A \dots (1) \\ \dfrac{[ABC]}{R}=4 \Rightarrow \dfrac{abc}{4R^2}=4 \Rightarrow 8R^3\prod_{cyc} \sin A = 16R^2 \Rightarrow \prod_{cyc} \sin A = \dfrac{2}{R} \dots (2)

Substitute ( 2 ) i n ( 1 ) (2) \ in \ (1) ,

c y c a cos A = 4 R × 2 R = 8 \sum_{cyc} a\cos A = 4R\times \dfrac{2}{R} =\Large \boxed{8}

Brilliant indeed!Thanks Nihar.

Arian Tashakkor - 5 years, 9 months ago

Log in to reply

Welcome! :)

Nihar Mahajan - 5 years, 9 months ago

First I found out that acosA+bcosB+ccosC=8 Δ² / ( abc )

Proof:

Let Δ = area of ΔABC.

bc sin A = sin B = ab sin C = 2Δ ................ (1) sin A = 2Δ / bc. & sin B = 2Δ / ca & sin C = 2Δ / ab. ........... (2)

LHS= a cos A + b cos B + c cos C, where a/sin A =m

= (m/2) [ 2 sin A cos A + 2 sin B cos B + 2 sin C cos C ]

= (m/2) [ ( sin 2A + sin 2B ) + sin 2C ]

= (m/2) [ 2 sin (A+B)· cos(A-B) + sin 2C ]

= (m/2) [ 2 sin C. cos(A-B) + 2 sin C cos C ]

= m sin C [ cos(A-B) + cos C ] here cos C = cos [ π - (A+B) ] = - cos (A+B)

= m sin C [ cos(A-B) - cos(A+B) ]

= m sin C [ 2 sin A sin B ]

= 2 ( m sin A ) sin B sin C

= 2 a sin B sin C

= 2a [ 2Δ / ca ] [ 2Δ / ab } from (2)

= 8 Δ² / ( abc ) ................................................... (M)

= RHS

Now given Δ/R=4 so Δ=4R=abc/Δ implies Δ²=abc .................(N). [because (R=abc/4Δ)] substitute the value of (N) in (M) and we will get 8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...