global max value

Algebra Level 3

y = sin ( sin x ) + cos ( sin x ) y=\sin(\sin x)+\cos (\sin x)

Find the global maximum value of y y .


The answer is 1.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f ( x ) = sin x + cos x = 2 sin ( x + π 4 ) f(x)=\sin x+\cos x=\sqrt 2\sin\left (x+\dfrac{\pi}{4} \right ) .

Then y = f ( sin x ) = 2 sin ( sin x + π 4 ) y=f(\sin x)=\sqrt 2\sin\left (\sin x+\dfrac{\pi}{4} \right ) .

Consider sin θ \sin\theta , which reaches a maximum where θ = π 2 + 2 n π { n Z } \theta = \dfrac{\pi}{2}+2n\pi\ \left \{n\in\mathbb{Z} \right \} .

Clearly sin x [ 1 , 1 ] \sin x\in [-1,1] , so as π 4 < π 2 < π 4 + 1 \dfrac{\pi}{4}<\dfrac{\pi}{2}<\dfrac{\pi}{4}+1 then f ( sin x ) f(\sin x) acheives its maximum value of 2 = 1.41 (3 s.f.) \sqrt 2=\color{#20A900}{\boxed{1.41\ \textnormal{(3 s.f.)}}} , at x = 2 n π + arcsin π 4 { n Z } x=2n\pi+\arcsin \dfrac{\pi}{4}\left \{n\in\mathbb{Z}\right \} .

Chew-Seong Cheong
Aug 14, 2020

y = sin ( sin x ) + cos ( sin x ) = 2 sin ( sin x + π 4 ) max ( y ) = 2 1.41 when x = 2 n π + sin 1 ( π 4 ) \begin{aligned} y & = \sin(\sin x) + \cos(\sin x) \\ & = \sqrt 2 \sin \left(\sin x + \frac \pi 4\right) \\ \implies \max(y) & = \sqrt 2 \approx \boxed{1.41} & \small \blue{\text{when }x = 2n\pi + \sin^{-1} \left(\frac \pi 4\right)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...