Be careful.

Calculus Level 3

A = 1 4 x ln ( 2 x + 1 3 x 2 ) d x A=\int _{ 1 }^{ 4 } x\ln \left(\frac { 2x+1 }{ 3x-2 } \right) dx

If A = 123 ln a 16 70 ln ( a + 1 ) a + b c A=\dfrac { 123\ln { a } }{ 16 } -\dfrac { 70\ln { (a+1) } }{ a } +\dfrac { b }{ c } , where a a is a positive integer, and b b and c c and positive coprime integers, find a + b + c a+b+c .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 14, 2019

A = 1 4 x ln ( 2 x + 1 3 x 2 ) d x As ln ( a b ) = ln a ln b = 1 4 x ln ( 2 x + 1 ) d x 1 4 x ln ( 3 x 2 ) d x = I 1 I 2 \begin{aligned} A & = \int_1^4 x \ln \left(\frac {2x+1}{3x-2}\right)\ dx & \small \color{#3D99F6} \text{As }\ln \left(\frac ab\right) = \ln a - \ln b \\ & = {\color{#3D99F6}\int_1^4 x \ln \left(2x+1\right)\ dx} - \color{#D61F06} \int_1^4 x \ln \left(3x-2\right)\ dx \\ & = {\color{#3D99F6}I_1} - \color{#D61F06} I_2 \end{aligned}

I 1 = 1 4 x ln ( 2 x + 1 ) d x Let u = 2 x + 1 x = u 1 2 , d x = d u 2 = 1 4 3 9 ( u 1 ) ln u d u = 1 4 3 9 u ln u d u 1 4 3 9 ln u d u Using integration by parts = u 2 ln u 8 3 9 3 9 u 8 d u u ln u u 4 3 9 = 81 ln 9 9 ln 3 8 u 2 16 3 9 9 ln 9 9 3 ln 3 + 3 4 = 123 ln 3 8 3 \begin{aligned} I_1 & = \int_1^4 x\ln(2x+1)\ dx & \small \color{#3D99F6} \text{Let }u = 2x + 1 \implies x = \frac {u-1}2,\ dx = \frac {du}2 \\ & = \frac 14 \int_3^9 (u-1)\ln u \ du \\ & = {\color{#3D99F6}\frac 14 \int_3^9 u\ln u\ du} - \frac 14 \int_3^9 \ln u\ du & \small \color{#3D99F6} \text{Using integration by parts} \\ & = {\color{#3D99F6} \frac {u^2 \ln u}8 \bigg|_3^9 - \int_3^9 \frac u8\ du} - \frac {u\ln u - u}4 \bigg|_3^9 \\ & = \frac {81\ln 9-9\ln 3}8 - \frac {u^2}{16} \bigg|_3^9 - \frac {9\ln 9-9-3\ln 3+3}4 \\ & = \frac {123\ln 3}8 - 3 \end{aligned}

I 2 = 1 4 x ln ( 3 x 2 ) d x Similar to finding I 1 = 1 9 1 10 ( u + 2 ) ln u d u = 1 9 [ u 2 ln u 2 u 2 4 + 2 u ln u 2 u ] 1 10 = 70 ln 10 9 19 4 \begin{aligned} I_2 & = \int_1^4 x \ln \left(3x-2\right)\ dx & \small \color{#3D99F6} \text{Similar to finding }I_1 \\ & = \frac 19 \int_1^{10} (u+2)\ln u \ du \\ & = \frac 19 \left[\frac {u^2\ln u}2 - \frac {u^2}4 + 2u \ln u - 2u \right]_1^{10} \\ & = \frac {70\ln 10}9 - \frac {19}4 \end{aligned}

Therefore, A = I 1 I 2 = 123 ln 3 8 3 70 ln 10 9 + 19 4 = 123 ln 9 16 70 ln 10 9 + 7 4 A=I_1 - I_2 = \dfrac {123\ln 3}8 - 3 - \dfrac {70\ln 10}9 + \dfrac {19}4 = \dfrac {123\ln 9}{16} -\dfrac {70\ln 10}9 + \dfrac 74 . Then a + b + c = 9 + 7 + 4 = 20 a+b+c = 9+7+4 = \boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...