Go ahead, use your calculator

77 ! 77! is perfectly divisible by 6 ! n 6!^{n} . Find the maximum value of n n .

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


Do you like challenging your brain?. Enter the world where Calculators will not help


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 15, 2016

The power q p ( n ! ) q_p(n!) of a prime factor p p in a factorial n ! n! is given by q p ( n ! ) = k = 1 n p k q_p(n!) = \displaystyle \sum_{k=1}^\infty \left \lfloor \frac n {p^k} \right \rfloor .

Therefore, for 6 ! 6! , we have { q 2 ( 6 ! ) = 6 2 + 6 4 = 3 + 1 = 4 q 3 ( 6 ! ) = 6 3 = 2 q 5 ( 6 ! ) = 6 5 = 1 \begin{cases} q_2(6!) = \left \lfloor \dfrac 62 \right \rfloor + \left \lfloor \dfrac 64 \right \rfloor = 3 + 1 = 4 \\ q_3(6!) = \left \lfloor \dfrac 63 \right \rfloor = 2 \\ q_5(6!) = \left \lfloor \dfrac 65 \right \rfloor = 1 \end{cases}

6 ! = 2 4 3 2 5 \implies 6! = 2^4 \cdot 3^2 \cdot 5

Similarly, for 77 ! 77! ,

q 2 ( 77 ! ) = 77 2 + 77 4 + 77 8 + 77 16 + 77 32 + 77 64 = 38 + 19 + 9 + 4 + 2 + 1 = 73 q 3 ( 77 ! ) = 77 3 + 77 9 + 77 27 = 25 + 8 + 2 = 35 q 5 ( 77 ! ) = 77 5 + 77 25 = 15 + 3 = 18 \begin{aligned} q_2(77!) & = \left \lfloor \dfrac {77}2 \right \rfloor + \left \lfloor \dfrac {77}4 \right \rfloor + \left \lfloor \dfrac {77}8 \right \rfloor + \left \lfloor \dfrac {77}{16} \right \rfloor + \left \lfloor \dfrac {77}{32} \right \rfloor + \left \lfloor \dfrac {77}{64} \right \rfloor = 38 + 19 + 9 + 4 + 2 +1 = 73 \\ q_3(77!) & = \left \lfloor \dfrac {77}3 \right \rfloor + \left \lfloor \dfrac {77}9 \right \rfloor + \left \lfloor \dfrac {77}{27} \right \rfloor = 25+8+2=35 \\ q_5(77!) & = \left \lfloor \dfrac {77}5 \right \rfloor + \left \lfloor \dfrac {77}{25} \right \rfloor = 15+3 =18 \end{aligned}

The maximum value of n n is

n m a x = min ( q 2 ( 77 ! ) q 2 ( 6 ! ) , q 3 ( 77 ! ) q 3 ( 6 ! ) , q 5 ( 77 ! ) q 5 ( 6 ! ) ) = min ( 73 4 , 35 2 , 18 1 ) = min ( 18 , 17 , 18 ) = 17 \begin{aligned} n_{max} & = \min \left( \left \lfloor \dfrac {q_2(77!)}{q_2(6!)} \right \rfloor, \left \lfloor \dfrac {q_3(77!)}{q_3(6!)} \right \rfloor, \left \lfloor \dfrac {q_5(77!)}{q_5(6!)} \right \rfloor \right) \\ & = \min \left( \left \lfloor \dfrac {73}{4} \right \rfloor, \left \lfloor \dfrac {35}{2} \right \rfloor, \left \lfloor \dfrac {18}{1} \right \rfloor \right) \\ & = \min \left( 18, 17, 18 \right) \\ & = \boxed{17} \end{aligned}

Nicely explained sir (+1).

Abhay Tiwari - 5 years ago

Detailed simple explaination.(+1)

Niranjan Khanderia - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...