Go down

Algebra Level 3

Find the minimum value of ( 5 + x ) ( 2 + x ) 1 + x \dfrac{(5+x)(2+x)}{1+x} for x > 0 x > 0 .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 21, 2017

f ( x ) = ( 5 + x ) ( 2 + x 1 + x = x 2 + 7 x + 10 x + 1 = x 2 + 7 x + 10 x + 1 = ( x + 1 ) ( x + 6 ) + 4 x + 1 = x + 6 + 4 x + 1 \begin{aligned} f(x) & = \frac {(5+x)(2+x}{1+x} \\ & = \frac {x^2+7x+10}{x+1} \\ & = \frac {x^2+7x+10}{x+1} \\ & = \frac {(x+1)(x+6)+4}{x+1} \\ & = x + 6 + \frac 4{x+1} \end{aligned}

Using AM-GM inequality on the following,

( x + 1 ) + 4 x + 1 2 4 = 4 f ( x ) = x + 6 + 4 x + 1 4 + 5 = 9 \begin{aligned} {\color{#3D99F6}(x + 1)} + \frac 4{\color{#3D99F6}x+1} \ge 2 \sqrt 4 = 4 \\ \implies f(x) = x + 6 + \frac 4{x+1} \ge 4+5 = \boxed{9} \end{aligned}

Equality occurs when x + 1 = 4 x + 1 x+1 = \dfrac 4{x+1} ( x + 1 ) 2 = 4 \implies (x+1)^2 = 4 x = 1 \implies x = 1 for x > 0 x>0 .

sir that's a different and an exceptional solution.

Sathvik Acharya - 4 years, 2 months ago

Log in to reply

You have forgotten to mention x > 0 x > 0 in your problem. For all real values of x x , the minimum is -\infty .

Chew-Seong Cheong - 4 years, 2 months ago

Oh! thank you sir for the correction

Sathvik Acharya - 4 years, 2 months ago

[1] By graphing the curve.
OR
[ 2 ] L e t f ( x ) = ( 5 + x ) ( 2 + x ) 1 + x . T h e t h e b e h a v i o r o f t h i s t y p e o f f u n c t i o n : I t s r a n g e i s f ( x ) + . B e f o r e a s y m p t o t e i t i s l i k e ± a + b c , a f t e r i t i s l i k e e + d c . i t h a s o n l y o n e l o c a l m i n i m u m a n d o n e l o c a l m a x i m u m . O n e e x t r e m u m o n e a c h s i d e . S o f o r o u r f u n c t i o n , a f t e r x = 1 , t h e r e i s a m i n i m u m . f ( . 001 ) = 9.997 , f ( . 002 ) = 9.994 , f ( . 003 ) = 9.991 , d e c r e a s i n g . f ( . 01 ) = 9.970 , f ( . 02 ) = 9.941 , f ( . 03 ) = 9.913 , d e c r e a s i n g . f ( . 1 ) = 9.997 , f ( . 2 ) = 9.994 , f ( . 3 ) = 9.991 , d e c r e a s i n g . f ( 1 ) = 9 , f ( 2 ) = 9.333 , i n c r e a s i n g . f ( 9.000001 ) = 15.4000 , f ( 8.999999 ) = 15.399999. S o 9.000000 i s t h e m i n i m u m . [2] Let~~ f(x)=\dfrac{(5+x)*(2+x)}{1+x}.\\ The~the ~behavior~ of this~ type~ of~function:- \\ Its~range~is~-\infty \leq f(x) \leq +\infty. \\ Before~asymptote ~ it ~is ~like ~\pm~ a +\frac b c,~after~it~ is~ like ~\mp~e+\frac d c.\\ \therefore~it~ has~ only~one~local ~minimum~and~one~local~maximum. One ~extremum~on ~each~side.\\ So~for~our~function,~after~x=-1,~ there ~is~a~minimum. \\ f(.001)=9.997,~~~~~f(.002)=9.994,~~~~~f(.003)=9.991,~~~~decreasing.\\ f(.01)=9.970,~~~~~~~f(.02)=9.941,~~~~~~f(.03)=9.913,~~~~~decreasing.\\ f(.1)=9.997,~~~~~~~~~f(.2)=9.994,~~~~~~~f(.3)=9.991,~~~~~decreasing.\\ f(1)=9,~~~~~~~~~~~~~f(2)=9.333,~~~~~increasing.\\ f(9.000001)=15.4000,~~~~~~~~~f(8.999999)=15.399999.\\ So~ 9.000000 ~~is ~the~minimum.

Let y y denote the expression given. Multiple x + 1 x+1 on both sides of the equation. Obtain the quadratic in x x . Now since x x is real, the determinant has to be non-negative. This gives the condition on y y .

Can you please explain what is the solution ? Thanks.

Niranjan Khanderia - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...