Go Find It!

Algebra Level 4

If A + B + C = π A+B+C=\pi and x , y , z R x,y,z \in \mathbb{R} and given that x sin A + y sin B + z sin C = 0 x 2 sin 2 A + y 2 sin 2 B + z 2 sin 2 C = 0 x \sin A +y \sin B + z \sin C =0 \\ x^2 \sin 2A + y^2 \sin 2B +z^2 \sin 2C=0

What is the value of x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C x^3 \sin 3A + y^3 \sin 3B + z^3 \sin 3C ?

1 3 2 π \pi It is not unique according to the initial conditions. 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vilakshan Gupta
Feb 19, 2020

I will write a different solution than the solution by @Mark Hennings .


Note that x sin A + y sin B + z sin C = Im ( x e i A + y e i B + z e i C ) = 0 x \sin A + y \sin B + z \sin C = \text{Im} (xe^{iA}+ye^{iB}+ ze^{iC})=0 and let x e i A = α , y e i B = β , z e i C = γ xe^{iA}=\alpha,ye^{iB}=\beta,ze^{iC}=\gamma , where α + β + γ R \alpha + \beta +\gamma \in \mathbb{R}

Extending the same logic for the second equation , we get α 2 + β 2 + γ 2 R \alpha^2+\beta^2+\gamma^2 \in \mathbb{R} which implies α β + β γ + γ α R \alpha \beta + \beta \gamma +\gamma \alpha \in \mathbb{R} from the identity ( α + β + γ ) 2 = α 2 + β 2 + γ 2 + 2 ( α β + β γ + γ α ) (\alpha + \beta + \gamma)^2=\alpha^2+\beta^2+\gamma^2+2(\alpha \beta + \beta \gamma +\gamma \alpha)

Now consider the identity α 3 + β 3 + γ 3 = 3 α β γ + ( α + β + γ ) ( α 2 + β 2 + γ 2 ( α β + β γ + γ α ) ) \alpha^3+\beta^3+\gamma^3=3\alpha \beta \gamma + (\alpha+\beta+\gamma)(\alpha^2+\beta^2+\gamma^2-(\alpha \beta+\beta \gamma + \gamma \alpha))

Here α β γ = x y z e i ( A + B + C ) = x y z e i π = x y z R \alpha \beta \gamma=xyze^{i(A+B+C)}=xyze^{i\pi}=-xyz \in \mathbb{R} which implies α 3 + β 3 + γ 3 R \alpha^3+\beta^3+\gamma^3 \in \mathbb{R}

Which means Im ( x 3 e i 3 A + y 3 e i 3 B + z 3 e i 3 C ) = 0 x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C = 0 \text{Im}(x^3e^{i3A}+y^3e^{i3B}+z^3e^{i3C})=0 \implies x^3 \sin 3A + y^3 \sin 3B + z^3 \sin 3C=\boxed{0}

Mark Hennings
Feb 19, 2020

Suppose that none of A , B , C A,B,C is a multiple of π \pi , so that sin A , sin B , sin C 0 \sin A, \sin B, \sin C \neq 0 . Then z sin C = ( x sin A + y sin B ) z\sin C = -(x\sin A + y\sin B) , and hence 0 = sin 2 C ( x 2 sin 2 A + y 2 sin 2 B + z 2 sin 2 C ) = sin 2 C ( x 2 sin 2 A + y 2 sin 2 B ) + ( x sin A + y sin B ) 2 sin 2 C = x 2 ( sin 2 A sin 2 C + sin 2 A sin 2 C ) + 2 x y sin A sin B sin 2 C + y 2 ( sin 2 B sin 2 C + sin 2 B sin 2 C ) = 2 x 2 sin A sin C ( cos A sin C + sin A cos C ) + 2 x y sin A sin B sin 2 C + 2 y 2 sin B sin C ( cos B sin C + sin B cos C ) = 2 x 2 sin A sin C sin ( A + C ) + 2 x y sin A sin B sin 2 C + 2 y 2 sin B sin C sin ( B + C ) = 2 sin A sin B sin C ( x 2 + 2 x y cos C + y 2 ) = 2 sin A sin B sin C [ ( x + y cos C ) 2 + y 2 sin 2 C ] \begin{aligned} 0 & = \; \sin^2C(x^2\sin2A + y^2\sin2B + z^2\sin2C) \; = \; \sin^2C(x^2\sin2A + y^2\sin2B) + (x\sin A + y\sin B)^2\sin2C \\ & = \; x^2(\sin2A\sin^2C + \sin^2A\sin2C) + 2xy\sin A \sin B \sin 2C + y^2(\sin2B\sin^2C + \sin^2B\sin2C) \\ & = \; 2x^2\sin A \sin C(\cos A \sin C + \sin A \cos C) + 2xy\sin A \sin B \sin2C + 2y^2\sin B \sin C(\cos B \sin C + \sin B \cos C) \\ & = \; 2x^2\sin A \sin C\sin(A+C) + 2xy\sin A \sin B \sin 2C + 2y^2\sin B \sin C \sin(B+C) \; = \; 2\sin A \sin B \sin C(x^2 + 2xy\cos C + y^2) \\ & = \; 2\sin A \sin B \sin C\big[(x + y\cos C)^2 + y^2\sin^2C\big] \end{aligned} so that x = y = 0 x=y=0 . The first condition now implies that z sin C = 0 z\sin C = 0 , and hence x = y = z = 0 x=y=z=0 , so that x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C = 0 x^3\sin3A + y^3\sin3B + z^3\sin3C = 0

Suppose now that C = n π C =n\pi is a multiple of π \pi . Then A + B = ( 1 n ) π A+B = (1-n)\pi and so sin B = ( 1 ) n 1 sin A \sin B = (-1)^{n-1}\sin A , sin 2 B = sin 2 A \sin2B = -\sin 2A , so that sin A ( x + ( 1 ) n 1 y ) = sin 2 A ( x 2 y 2 ) = 0 \sin A(x + (-1)^{n-1}y) \; =\; \sin2A(x^2 - y^2) \; = \; 0

  • If A A is not a multiple of π \pi we deduce that x = ( 1 ) n y x = (-1)^ny . But then x 3 = ( 1 ) n y 3 x^3 = (-1)^ny^3 and sin 3 B = ( 1 ) n 1 sin 3 A \sin3B = (-1)^{n-1}\sin3A , while sin 3 C = 0 \sin3C = 0 , so that x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C = 0 x^3\sin3A + y^3\sin3B + z^3\sin3C = 0 .
  • If A A is a multple of π \pi , then B B is a multiple of π \pi as well. Then x j sin j A + y j sin j B + z j sin j C = 0 x^j\sin jA + y^j\sin jB + z^j \sin jC = 0 for any j N j \in \mathbb{N} , whatever the values of x , y , z x,y,z .

Thus the only possible value of x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C x^3\sin3A + y^3\sin3B + z^3\sin3C is 0 \boxed{0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...