If A + B + C = π and x , y , z ∈ R and given that x sin A + y sin B + z sin C = 0 x 2 sin 2 A + y 2 sin 2 B + z 2 sin 2 C = 0
What is the value of x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Suppose that none of A , B , C is a multiple of π , so that sin A , sin B , sin C = 0 . Then z sin C = − ( x sin A + y sin B ) , and hence 0 = sin 2 C ( x 2 sin 2 A + y 2 sin 2 B + z 2 sin 2 C ) = sin 2 C ( x 2 sin 2 A + y 2 sin 2 B ) + ( x sin A + y sin B ) 2 sin 2 C = x 2 ( sin 2 A sin 2 C + sin 2 A sin 2 C ) + 2 x y sin A sin B sin 2 C + y 2 ( sin 2 B sin 2 C + sin 2 B sin 2 C ) = 2 x 2 sin A sin C ( cos A sin C + sin A cos C ) + 2 x y sin A sin B sin 2 C + 2 y 2 sin B sin C ( cos B sin C + sin B cos C ) = 2 x 2 sin A sin C sin ( A + C ) + 2 x y sin A sin B sin 2 C + 2 y 2 sin B sin C sin ( B + C ) = 2 sin A sin B sin C ( x 2 + 2 x y cos C + y 2 ) = 2 sin A sin B sin C [ ( x + y cos C ) 2 + y 2 sin 2 C ] so that x = y = 0 . The first condition now implies that z sin C = 0 , and hence x = y = z = 0 , so that x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C = 0
Suppose now that C = n π is a multiple of π . Then A + B = ( 1 − n ) π and so sin B = ( − 1 ) n − 1 sin A , sin 2 B = − sin 2 A , so that sin A ( x + ( − 1 ) n − 1 y ) = sin 2 A ( x 2 − y 2 ) = 0
Thus the only possible value of x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C is 0 .
Problem Loading...
Note Loading...
Set Loading...
I will write a different solution than the solution by @Mark Hennings .
Note that x sin A + y sin B + z sin C = Im ( x e i A + y e i B + z e i C ) = 0 and let x e i A = α , y e i B = β , z e i C = γ , where α + β + γ ∈ R
Extending the same logic for the second equation , we get α 2 + β 2 + γ 2 ∈ R which implies α β + β γ + γ α ∈ R from the identity ( α + β + γ ) 2 = α 2 + β 2 + γ 2 + 2 ( α β + β γ + γ α )
Now consider the identity α 3 + β 3 + γ 3 = 3 α β γ + ( α + β + γ ) ( α 2 + β 2 + γ 2 − ( α β + β γ + γ α ) )
Here α β γ = x y z e i ( A + B + C ) = x y z e i π = − x y z ∈ R which implies α 3 + β 3 + γ 3 ∈ R
Which means Im ( x 3 e i 3 A + y 3 e i 3 B + z 3 e i 3 C ) = 0 ⟹ x 3 sin 3 A + y 3 sin 3 B + z 3 sin 3 C = 0