Sine and Cosine powers

Geometry Level 2

sin 6 ( θ ) + cos 6 ( θ ) = sin ( 2 θ ) = ? \large \sin^{6}(\theta)+\cos^{6}(\theta)=\sin(2\theta) = \ ?

If the above equation is true, then what is the value of sin ( 2 θ ) \sin(2\theta) ? Give your answer to 3 decimal places.


The answer is 0.666.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Omkar Kulkarni
Apr 28, 2015

sin 6 θ + cos 6 θ = sin ( 2 θ ) \sin^{6}\theta+\cos^{6}\theta=\sin(2\theta)

( sin 2 θ ) 3 + ( cos 2 θ ) 3 = 2 sin θ cos θ \left(\sin^2\theta\right)^{3}+\left(\cos^{2}\theta\right)^{3}=2\sin\theta\cos\theta

( sin 2 θ + cos 2 θ ) ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) = 2 sin θ cos θ \left(\sin^{2}\theta+\cos^{2}\theta\right)\left(\sin^{4}\theta-\sin^{2}\theta\cos^{2}\theta+\cos^{4}\theta\right)=2\sin\theta\cos\theta

( ( sin 2 θ ) 2 + ( cos 2 θ ) 2 ) s i n 2 θ cos 2 θ = 2 sin θ cos θ \left(\left(\sin^{2}\theta\right)^{2}+\left(\cos^{2}\theta\right)^{2}\right)-sin^{2}\theta\cos^{2}\theta=2\sin\theta\cos\theta

( sin 2 θ + cos 2 θ ) 2 2 sin 2 θ cos 2 θ sin 2 θ cos 2 θ = 2 sin θ cos θ \left(\sin^{2}\theta+\cos^{2}\theta\right)^{2}-2\sin^{2}\theta\cos^{2}\theta-\sin^{2}\theta\cos^{2}\theta=2\sin\theta\cos\theta

1 3 sin 2 θ cos 2 θ = 2 sin θ cos θ 1-3\sin^{2}\theta\cos^{2}\theta=2\sin\theta\cos\theta

Let sin θ cos θ = x \sin\theta\cos\theta=x .

1 3 x 2 = 2 x 1-3x^{2}=2x

3 x 2 + 2 x 1 = 0 3x^{2}+2x-1=0

( 3 x 1 ) ( x + 1 ) = 0 (3x-1)(x+1)=0

x = 1 3 or x = 1 x=\frac{1}{3}~\text{or}~x=-1

Now, x 1 x\neq-1 . (Why?)

sin θ cos θ = 1 3 sin ( 2 θ ) = 2 3 \therefore \sin\theta\cos\theta=\frac{1}{3}\Rightarrow\boxed{\sin(2\theta)=\frac{2}{3}}

Got the idea from this !

Moderator note:

Almost flawless. You should explain why x 1 x \ne -1 .

I gotchu, Omkar! If x = sin ( θ ) cos ( θ ) = 1 x=\sin(\theta)\cos(\theta) = 1 , then 2 sin ( θ ) cos ( θ ) = sin ( 2 θ ) = 2 2\sin(\theta)\cos(\theta) = \sin(2\theta) = 2 . But 1 sin ( 2 θ ) 1 θ -1 \leq \sin(2\theta) \leq 1 \quad \forall \theta . x 1 \therefore x \neq -1 .

Ryan Tamburrino - 6 years, 1 month ago

Log in to reply

Yupp! I kindaf left that as a challenge to the reader :P

Omkar Kulkarni - 6 years, 1 month ago

Yes correct, thank you. Note that I've added in "With θ \theta as a real number", else we could have relaxed the constraint 1 sin ( 2 θ ) 1 θ -1 \leq \sin(2\theta) \leq 1 \quad \forall \theta .

Brilliant Mathematics Staff - 6 years, 1 month ago

Log in to reply

Yeah sure! I'll stylise that :P

Omkar Kulkarni - 6 years, 1 month ago

or sin(2theta)=2x=-2 and the range of sin function is [-1,1]. so it is not possible. I did exactly the same way and got sin(2theta)=2/3.But then i found theta =0.3649 or 1.9359 as the answer which was not asked.I simply solve the equation.

vinod trivedi - 6 years, 1 month ago

I did the exact same way as Omkar

Aaryan Marcha - 11 months, 1 week ago

20 seconds question!

Kyle Finch - 6 years, 1 month ago
Hobart Pao
Apr 28, 2015

I used the identity sin 6 x + cos 6 x = 1 3 4 sin 2 2 x \displaystyle \sin^{6} x + \cos^{6} x = 1-\frac{3}{4}\sin^{2} 2x . Then, all I had to do was 1 3 4 sin 2 2 x = sin 2 x \displaystyle1-\frac{3}{4}\sin^{2} 2x = \sin2x and solve a quadratic equation, substituting y y for sin 2 x \sin 2x and solving for y y . The two results were 2 3 \displaystyle\frac{2}{3} and 2 -2 , but only 2 3 \displaystyle\frac{2}{3} can be a response because arcsin ( 2 ) \arcsin ( -2) is not defined.

Moderator note:

Correct. For clarity, because the identity you used is not well known, you should show that it's true. Technically arcsin ( 2 ) \arcsin(-2) is defined because sin ( x ) = e i x e i x 2 \sin(x) = \frac {e^{ix} - e^{-ix} } {2} . Note that I've added the constraint stating θ \theta is a real number. Else, there would be two answers.

Amed Lolo
Aug 19, 2016

(sin^2(P))^3+(cos^2(P))^3=sin2(p). cos2(p)=1-2sin^2(p)=2cos^2(p)-1. so (.5-.5cos2(p))^3+(.5+.5cos2(p))^3=sin2p. (1-cos2p)^3+(1+cos2p)^3=8sin2p. (1-cos2p)×(1-2cos2p+cos^2(2p))+(1+cos2p)×(1+2cos2p+cos^2(2p))=8sin2p. so the above equation will be shortcut as 2+6cos^2(2p)=8sin2p =1+3×(1-sin^2(2p))=. 4sin2p =4-3sin^2(2p) put sin2p=y. 3y^2+4y-4=0 so y=-2 (rejected) or 2÷3 So y=sin2p=2÷3#######

Fredric Kardon
Nov 27, 2016

( (sin a)^2 + (cos a)^2 )^3 = (sin a)^6 + (cos a)^6 + 3 x (sin a)^4 x (cos a)^2 + 3 x (sin a)^2 x cos a)^4

1 = (sin a)^6 + (cos a)^6 + 3 x (sin a)^2 x (cos a)^2 x ( (sin a)^2 + (cos a)^2 )

1 = sin 2a + (3/4) x (sin 2a)^2

Solving with the condition |sin 2a| <= 1 yields sin 2a = 2/3.

Chew-Seong Cheong
Dec 26, 2015

sin 6 θ + cos 6 θ = sin ( 2 θ ) Since cos ( 2 θ ) = 1 2 sin 2 θ = 2 cos 2 θ 1 1 2 3 ( 1 cos ( 2 θ ) ) 3 + 1 2 3 ( 1 cos ( 2 θ ) ) 3 = sin ( 2 θ ) 2 8 ( 1 + 3 cos 2 ( 2 θ ) ) = sin ( 2 θ ) Even terms cancel out. 1 + 3 ( 1 sin 2 ( 2 θ ) ) = 4 sin ( 2 θ ) 3 sin 2 ( 2 θ ) + 4 sin ( 2 θ ) 4 = 0 ( 3 sin ( 2 θ ) 2 ) ( sin ( 2 θ ) + 2 ) = 0 sin ( 2 θ ) = 2 3 sin ( 2 θ ) 2 \begin{aligned} \color{#3D99F6}{\sin^6 \theta + \cos^6 \theta} & = \sin (2\theta) \quad \quad \small \color{#3D99F6}{\text{Since }\cos (2\theta) = 1-2\sin^2 \theta = 2\cos^2 \theta -1} \\ \color{#3D99F6}{\frac{1}{2^3} (1-\cos (2 \theta))^3 +\frac{1}{2^3} (1-\cos (2 \theta))^3 } & = \sin (2 \theta) \\ \frac{2}{8}(\color{#3D99F6}{1 + 3 \cos^2 (2 \theta)}) & = \sin (2 \theta) \quad \quad \small \color{#3D99F6}{\text{Even terms cancel out.}} \\ 1 + 3(1- \sin^2 (2 \theta)) & = 4 \sin (2 \theta) \\ \Rightarrow 3 \sin^2 (2 \theta) + 4 \sin (2 \theta) - 4 & = 0 \\ (3 \sin (2 \theta) - 2)(\sin (2 \theta) + 2) & = 0 \\ \Rightarrow \sin (2 \theta) & = \boxed {\frac{2}{3}} \quad \quad \small \color{#3D99F6}{\sin (2 \theta) \ne - 2} \end{aligned}

Same but ending a little differently. sin 6 θ + cos 6 θ = sin ( 2 θ ) \sin^{6}\theta+\cos^{6}\theta=\sin(2\theta)

( sin 2 θ ) 3 + ( cos 2 θ ) 3 = sin ( 2 θ ) \left(\sin^2\theta\right)^{3}+\left(\cos^{2}\theta\right)^{3}=\sin(2\theta)

( sin 2 θ + cos 2 θ ) ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) = sin ( 2 θ ) \left(\sin^{2}\theta+\cos^{2}\theta\right)\left(\sin^{4}\theta-\sin^{2}\theta\cos^{2}\theta+\cos^{4}\theta\right)=\sin(2\theta)

( ( sin 2 θ ) 2 + ( cos 2 θ ) 2 ) s i n ( 2 θ ) 4 = sin ( 2 θ ) \left(\left(\sin^{2}\theta\right)^{2}+\left(\cos^{2}\theta\right)^{2}\right)-\dfrac{sin(2\theta)}{4}=\sin(2\theta)

( sin 2 θ + cos 2 θ ) 2 3 s i n ( 2 θ ) 4 = sin ( 2 θ ) \left(\sin^{2}\theta+\cos^{2}\theta\right)^{2}-\dfrac{3*sin(2\theta)}{4}=\sin(2\theta)

1 3 sin ( 2 θ ) 4 = sin ( 2 θ ) 4 3 sin ( 2 θ ) 2 4 sin ( 2 θ ) = 0 1-\dfrac{3*\sin(2\theta)}{4}=\sin(2\theta) \\ 4-3*\sin(2\theta)^2-4*\sin(2\theta)=0\\ sin ( 2 θ ) = 4 ± 4 2 + 4 4 4 2 ( 3 ) = 2 3 2 n o t a s o l u t i o n . \sin(2\theta)=\dfrac{4\pm \sqrt{4^2+4*4*4} } {2(-3)}=~~~~\color{#D61F06}{\dfrac 2 3}~~~~~~~~~~~-2 ~not~ a~ solution.

Rohan Astik
May 2, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...