Going an year ahead

Calculus Level 4

n = 0 1 201 7 2 n 201 7 2 n \large \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{2017^{2^n}-2017^{-2^n}} If the value of above sum can be expressed in the form of 1 a \dfrac{1}{a} , find a a .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Udaiwal
Jan 20, 2016

Let S ( x ) = n = 0 x 2 n 1 x 2 n + 1 ; S N ( x ) = n = 0 N x 2 n 1 x 2 n + 1 . S(x)=\displaystyle \sum_{n=0}^{\infty} \dfrac{x^{2^n}}{1-x^{2^{n+1}}}\quad;\quad S_{N}(x)=\displaystyle \sum_{n=0}^{N} \dfrac{x^{2^n}}{1-x^{2^{n+1}}}. The series in the problem is S ( 1 / 2017 ) S(1/2017) .Now note that x 2 n 1 x 2 n + 1 = 1 1 x 2 n 1 1 x 2 n + 1 \dfrac{x^{2^n}}{1-x^{2^{n+1}}} =\dfrac{1}{1-x^{2^n}}-\dfrac{1}{1-x^{2^{n+1}}} Using this identity,the partial sums telescope: S N ( x ) = ( 1 1 x 1 1 x 2 ) + ( 1 1 x 2 1 1 x 4 ) + + ( 1 1 x 2 N 1 1 x 2 N + 1 ) = 1 1 x 1 1 x 2 N + 1 . S_{N}(x)=\left(\dfrac{1}{1-x}-\dfrac{1}{1-x^2}\right)+\left(\dfrac{1}{1-x^2}-\dfrac{1}{1-x^4}\right)+\ldots+\left(\dfrac{1}{1-x^{2^N}}-\dfrac{1}{1-x^{2^{N+1}}}\right) \\ = \dfrac{1}{1-x}-\dfrac{1}{1-x^{2^{N+1}}}. So that S ( x ) = lim n S N ( x ) = 1 1 x 1 = x 1 x . S(x)=\lim_{n \to \infty} S_{N}(x)=\dfrac{1}{1-x}-1=\dfrac{x}{1-x}.

S ( 1 / 2017 ) = ( 1 / 2017 ) / ( 1 1 / 2017 ) = 1 2016 . \therefore S (1/2017)= (1/2017)/(1 - 1/2017) = \boxed{\dfrac{1}{2016}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...