Going back to the roots!

Algebra Level 4

Given that x 1 x_1 , x 2 x_2 , and x 3 x_3 are the roots of the polynomial f ( x ) = 4 x 3 24 x 2 + 44 x 23 f(x)=4x^3-24x^2+44x-23 , you can express the number

( x 1 x 2 ) 4 + ( x 2 x 3 ) 4 + ( x 1 x 3 ) 4 (x_1 x_2)^4+(x_2 x_3 )^4+(x_1 x_3)^4

as a fraction p q \dfrac{p}{q} , where p p and q q are positive coprime integers. Find p + q p+q .


The answer is 7117.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arturo Presa
Dec 15, 2020

Using Vieta's formulas we get that x 1 + x 2 + x 3 = 6 , x 1 x 2 + x 2 x 3 + x 1 x 3 = 11 x_1+x_2+x_3= 6, x_1 x_2+x_2 x_3 + x_1 x_3= 11 and x 1 x 2 x 3 = 23 / 4. x_1 x_2 x_3 = 23/4. We can construct a new polynomial g ( x ) = x 3 + a x 2 + b x + c , g(x)= x^3+ax^2+bx+c, whose roots are x 1 x 2 , x 2 x 3 , x_1 x_2, x_2 x_3, and x 1 x 3 . x_1 x_3. Using Vieta's formulas again and the previous equations we get a = ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) = 11 a=-(x_1 x_2+x_2 x_3 + x_1 x_3)=-11\quad\quad\quad\quad \quad\quad\quad\quad\quad b = x 1 2 x 2 x 3 + x 1 x 2 2 x 3 + x 1 x 2 x 3 2 = x 1 x 2 x 3 ( x 1 + x 2 + x 3 ) = 23 4 × 6 = 69 2 \quad\quad\quad\quad \quad\quad b= x_1^2 x_2 x_3+x_1 x_2^2 x_3 + x_1 x_2 x_3^2= x_1 x_2 x_3 (x_1+x_2+x_3)=\frac{23}{4}\times6=\frac{69}{2} c = ( x 1 x 2 ) ( x 2 x 3 ) ( x 1 x 3 ) = ( x 1 x 2 x 3 ) 2 = ( 23 4 ) 2 = 529 16 . \quad c=-(x_1 x_2)(x_2 x_3) ( x_1 x_3)=-(x_1 x_2 x_3)^2=-(\frac{23}{4})^2=-\frac{529}{16}. So, the numbers x 1 x 2 , x 2 x 3 x_1 x_2, x_2 x_3 and x 1 x 3 x_1 x_3 are the roots of the polynomial g ( x ) = x 3 11 x 2 + 69 2 x 529 16 . g(x)=x^3-11x^2+\frac{69}{2} x-\frac{529}{16}.

Now, let us define α n = ( x 1 x 2 ) n + ( x 2 x 3 ) n + ( x 1 x 3 ) n . \alpha_n= (x_1 x_2)^n+(x_2 x_3)^n +( x_1 x_3)^n. It is obvious that α 0 = 3 \alpha_0=3 (none of the x i s x_i's is equal to zero) and α 1 = x 1 x 2 + x 2 x 3 + x 1 x 3 = 11. \alpha_1=x_1 x_2+x_2 x_3 + x_1 x_3=11. We can also find α 2 . \alpha_2. Indeed, α 2 = ( x 1 x 2 ) 2 + ( x 2 x 3 ) 2 + ( x 1 x 3 ) 2 = ( x 1 x 2 + x 2 x 3 + x 1 x 3 ) 2 2 x 1 x 2 x 3 ( x 1 + x 2 + x 3 ) = 1 1 2 2 × 23 4 × 6 = 52. \alpha_2 = (x_1 x_2)^2+(x_2 x_3)^2 +( x_1 x_3)^2=(x_1 x_2+x_2 x_3 + x_1 x_3)^2-2 x_1 x_2 x_3 (x_1+x_2+x_3)=11^2- 2\times\frac{23}{4}\times 6=52. Now it is easy to see that α n \alpha_n is a linear recurrent sequence such that α n = 11 α n 1 69 2 α n 2 + 529 16 α n 3 , \alpha_n= 11\alpha_{n-1}-\frac{69}{2} \alpha_{n-2}+ \frac{529}{16}\alpha_{n-3}, and α 0 = 3 , α 1 = 11 \alpha_0=3, \alpha_1= 11 and α 2 = 52. \alpha_2=52. Using the recurrence relation, we get that α 3 = 4667 16 \alpha_3=\frac{4667}{16} and α 4 = 7113 4 . \alpha_4=\frac{7113}{4}. Therefore, the answer is 7113 + 4 = 7117 . \boxed{7113+4=7117}.

An alternative to the recurrence would be r 1 4 + r 2 4 + r 3 4 = ( r 1 2 + r 2 2 + r 3 2 ) 2 2 ( ( r 1 r 2 ) 2 + ( r 2 r 3 ) 2 + ( r 3 r 1 ) 2 ) = ( ( r 1 + r 2 + r 3 ) 2 2 ( r 1 r 2 + r 2 r 3 + r 3 r 1 ) ) 2 2 ( ( r 1 r 2 + r 2 r 3 + r 3 r 1 ) 2 2 ( r 1 + r 2 + r 3 ) ( r 1 r 2 r 3 ) ) r_1^4+r_2^4+r_3^4=(r_1^2+r_2^2+r_3^2)^2-2((r_1r_2)^2+(r_2r_3)^2+(r_3r_1)^2)=((r_1+r_2+r_3)^2-2(r_1r_2+r_2r_3+r_3r_1))^2-2((r_1r_2+r_2r_3+r_3r_1)^2-2(r_1+r_2+r_3)(r_1r_2r_3)) where r 1 = x 1 x 2 , r 2 = x 2 x 3 r_1=x_1x_2, r_2=x_2x_3 and r 3 = x 3 x 1 r_3=x_3x_1

Sathvik Acharya - 5 months, 4 weeks ago

How was 69/2 gotten

Odijie Dayvhid - 5 months, 4 weeks ago

Log in to reply

It is the value of a . a.

Arturo Presa - 5 months, 3 weeks ago
Chew-Seong Cheong
Dec 16, 2020

By Vieta's formula , we have x 1 + x 2 + x 3 = 24 4 = 6 x_1+x_2+x_3 = \dfrac {24}4 = 6 , x 1 x 2 + x 2 x 3 + x 3 x 1 = 44 4 = 11 x_1x_2 + x_2 x_3 + x_3x_1 = \dfrac {44}4 = 11 , and x 1 x 2 x 3 = 23 4 x_1x_2x_3 = \dfrac {23}4 .

Now let a = x 1 x 2 a=x_1x_2 , b = x 2 x 3 b=x_2x_3 , and c = x 3 x 1 c=x_3x_1 and P n = a n + b n + c n P_n = a^n + b^n + c^n , where n n is a positive integer. Then we can solve for P 4 = a 4 + b 4 + c 4 = ( x 1 x 2 ) 4 + ( x 2 x 3 ) 4 + ( x 3 x 1 ) 4 P_4 = a^4 + b^4 + c^4 = (x_1x_2)^4 +(x_2x_3)^4+(x_3x_1)^4 using Newton's sums (or identities) as follows:

Let { S 1 = a + b + c = x 1 x 2 + x 2 x 3 + x 3 x 1 = 11 S 2 = a b + b c + c a = x 1 x 2 2 x 3 + x 1 x 2 x 3 2 + x 1 2 x 2 x 3 = x 1 x 2 x 3 ( x 1 + x 2 + x 3 ) = 23 4 × 6 = 69 2 S 3 = a b c = ( x 1 x 2 x 3 ) 2 = ( 23 4 ) 2 = 529 16 \begin{cases} S_1 = a + b + c = x_1x_2 + x_2 x_3 + x_3x_1 = 11 \\ S_2 = ab+bc+ca = x_1x_2^2x_3 + x_1x_2 x_3^2 + x_1^2x_2x_3 = x_1x_2x_3(x_1+x_2+x_3) = \dfrac {23}4 \times 6 = \dfrac {69}2 \\ S_3 = abc = (x_1x_2x_3)^2 = \left(\dfrac {23}4 \right)^2 = \dfrac {529}{16} \end{cases}

Then

P 1 = S 1 = 11 P 2 = S 1 P 1 2 S 2 = 11 × 11 2 × 69 2 = 52 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 11 × 52 69 2 × 11 + 3 × 529 16 = 4667 16 P 3 = S 1 P 3 S 2 P 2 + S 3 P 1 = 11 × 4667 16 69 2 × 52 + 529 16 × 11 = 7113 4 \begin{aligned} P_1 & = S_1 = 11 \\ P_2 & = S_1P_1 - 2S_2 = 11 \times 11 - 2 \times \frac {69}2 = 52 \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = 11 \times 52 - \frac {69}2 \times 11 + 3 \times \frac {529}{16} = \frac {4667}{16} \\ P_3 & = S_1P_3 - S_2P_2 + S_3P_1 = 11 \times \frac {4667}{16} - \frac {69}2 \times 52 + \frac {529}{16} \times 11 = \frac {7113}4 \end{aligned}

Therefore p + q = 7113 + 4 = 7117 p+q = 7113+4 = \boxed{7117} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...