Going complex

Algebra Level 2

Find all the solutions to the equation: sin z = 3 4 i \sin{z}=\displaystyle\frac{3}{4}i

z = ( 2 n + 1 ) π + i ln 2 , n Z z=(2n+1)\pi+i\ln{2}, n \in \mathbb{Z} z = 2 n π i ln 2 , n Z z=2n\pi-i\ln{2}, n \in \mathbb{Z} z = n π + i ( 1 ) n ln 2 , n Z z=n\pi+i\,(-1)^n \ln{2}, n \in \mathbb{Z} z = n π + i ln 2 , n Z z=n\pi+i \ln{2}, n \in \mathbb{Z}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Gabriel Chacón
Jan 27, 2019

sin z = 3 4 i \sin{z}=\frac{3}{4}i

Multiply by i i and add cos z \cos{z} to both sides:

cos z + i sin z = cos z 3 4 cos z = e i z + 3 4 \cos{z} + i\sin{z}= \cos{z}-\frac{3}{4}\quad \implies \quad \cos{z}=e^{iz}+\frac{3}{4}

Apply the trigonometrical identity:

sin 2 z + cos 2 z = 1 9 16 + ( e i z + 3 4 ) 2 = 1 ( e i z ) 2 + 3 2 e i z 1 = 0 \sin^2{z}+\cos^2{z}=1 \quad \implies \quad -\frac{9}{16}+(e^{iz}+\frac{3}{4})^2=1 \quad \implies \quad (e^{iz})^2+ \frac{3}{2}e^{iz}-1=0

The solutions for the quadratical equation are e i z = 2 e^{iz}=-2 and e i z = 1 2 e^{iz}=\frac{1}{2} .

e i z = 2 i z = ln ( 2 e i π + 2 π n ) z = ( 2 n + 1 ) π i ln 2 , n Z e^{iz}=-2 \quad \implies \quad iz=\ln{(2 \cdot e^{i\pi+2\pi n})} \quad \implies \quad z= (2n+1)\pi-i\ln{2}, \quad n \in \mathbb{Z}

e i z = 1 2 i z = ln ( 2 e i 2 π n ) z = 2 n π + i ln 2 , n Z e^{iz}=\frac{1}{2} \quad \implies \quad iz=-\ln{(2 \cdot e^{i2\pi n})} \quad \implies \quad z= 2n\pi+i\ln{2}, \quad n \in \mathbb{Z}

Both solutions can be rewritten in one expression as z = n π + i ( 1 ) n ln 2 , n Z \boxed{z= n\pi+i (-1)^n\ln{2}, n \in \mathbb{Z}}

Chew-Seong Cheong
Jan 28, 2019

sin z = 3 4 i By Euler’s formula: e θ i = cos θ + i sin θ e z i e z i 2 i = 3 4 i Multiply both sides by 4 i 2 e z i 2 e z i = 3 Multiply both sides by e z i and rearrange 2 e 2 z i + 3 e z i 2 = 0 Solving the quadratic for e z i ( 2 e z i 1 ) ( e z i + 2 ) = 0 e z i = { 1 2 2 \begin{aligned} \color{#3D99F6} \sin z & = \frac 34 i & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta \\ \frac {e^{zi} - e^{-zi}}{2i} & = \frac 34 i & \small \color{#3D99F6} \text{Multiply both sides by }4i \\ 2e^{zi} - 2e^{-zi} & = - 3 & \small \color{#3D99F6} \text{Multiply both sides by }e^{zi} \text{ and rearrange} \\ 2e^{2zi} +3e^{zi} - 2 & = 0 & \small \color{#3D99F6} \text{Solving the quadratic for }e^{zi} \\ \left(2e^{zi} - 1\right) \left(e^{zi} + 2\right) & = 0 \\ \implies e^{zi} & = \begin{cases} \frac 12 \\ - 2 \end{cases} \end{aligned}

Let z = x + y i z=x+yi , where x x and y y are real. Then e z i = e i ( x + y i ) = e y + x i = e y e x i = e y ( cos x + i sin x ) e^{zi} = e^{i(x+yi)} = e^{-y+xi} = e^{-y}e^{xi} = e^{-y}(\cos x + i \sin x) and

{ e y ( cos x + i sin x ) = 1 2 ( 1 + 0 i ) { x = cos 1 1 = sin 1 0 = 2 n π , n Z e y = 1 2 y = ln 2 e y ( cos x + i sin x ) = 2 ( 1 + 0 i ) { x = cos 1 1 = sin 1 0 = ( 2 n + 1 ) π , n Z e y = 2 y = ln 2 \begin{cases} e^{-y}(\cos x + i \sin x) = \frac 12 (1+0i) & \implies \begin{cases} x = \cos^{-1} 1 = \sin^{-1} 0 = 2n \pi, \ n \in \mathbb Z \\ e^{-y} = \frac 12 \implies y = \ln 2 \end{cases} \\ e^{-y}(\cos x + i \sin x) = 2(-1+0i) & \implies \begin{cases} x = \cos^{-1} -1 = \sin^{-1} 0 = (2n+1) \pi, \ n \in \mathbb Z \\ e^{-y} = 2 \implies y = - \ln 2 \end{cases} \end{cases}

Therefore, z = { 2 n π + i ln 2 ( 2 n + 1 ) π i ln 2 z = n π + i ( 1 ) n ln 2 z = \begin{cases} 2n\pi + i\ln 2 \\ (2n+1)\pi - i \ln 2 \end{cases} \implies z = \boxed{n\pi + i(-1)^n \ln 2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...