Find all the solutions to the equation: sin z = 4 3 i
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
sin z 2 i e z i − e − z i 2 e z i − 2 e − z i 2 e 2 z i + 3 e z i − 2 ( 2 e z i − 1 ) ( e z i + 2 ) ⟹ e z i = 4 3 i = 4 3 i = − 3 = 0 = 0 = { 2 1 − 2 By Euler’s formula: e θ i = cos θ + i sin θ Multiply both sides by 4 i Multiply both sides by e z i and rearrange Solving the quadratic for e z i
Let z = x + y i , where x and y are real. Then e z i = e i ( x + y i ) = e − y + x i = e − y e x i = e − y ( cos x + i sin x ) and
⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ e − y ( cos x + i sin x ) = 2 1 ( 1 + 0 i ) e − y ( cos x + i sin x ) = 2 ( − 1 + 0 i ) ⟹ { x = cos − 1 1 = sin − 1 0 = 2 n π , n ∈ Z e − y = 2 1 ⟹ y = ln 2 ⟹ { x = cos − 1 − 1 = sin − 1 0 = ( 2 n + 1 ) π , n ∈ Z e − y = 2 ⟹ y = − ln 2
Therefore, z = { 2 n π + i ln 2 ( 2 n + 1 ) π − i ln 2 ⟹ z = n π + i ( − 1 ) n ln 2 .
Problem Loading...
Note Loading...
Set Loading...
sin z = 4 3 i
Multiply by i and add cos z to both sides:
cos z + i sin z = cos z − 4 3 ⟹ cos z = e i z + 4 3
Apply the trigonometrical identity:
sin 2 z + cos 2 z = 1 ⟹ − 1 6 9 + ( e i z + 4 3 ) 2 = 1 ⟹ ( e i z ) 2 + 2 3 e i z − 1 = 0
The solutions for the quadratical equation are e i z = − 2 and e i z = 2 1 .
e i z = − 2 ⟹ i z = ln ( 2 ⋅ e i π + 2 π n ) ⟹ z = ( 2 n + 1 ) π − i ln 2 , n ∈ Z
e i z = 2 1 ⟹ i z = − ln ( 2 ⋅ e i 2 π n ) ⟹ z = 2 n π + i ln 2 , n ∈ Z
Both solutions can be rewritten in one expression as z = n π + i ( − 1 ) n ln 2 , n ∈ Z