Going (not quite) in circles

Calculus Level 4

Find I = 1 2 π C y x 2 + y 2 d x + x x 2 + y 2 d y I=\frac{1}{2\pi}\int_C \frac{-y}{x^2+y^2}dx+\frac{x}{x^2+y^2}dy over the curve C C parameterised by x = t + 10 cos t , y = 10 sin t x=t+10\cos{t}, y=10\sin t for 0 t 10 π 0\leq t \leq 10\pi .

(from a recent calculus exam)

0 2 4 1 3 5 none of the others

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Mar 9, 2021

Here's a solution for yah, Sir Otto!

Taking d x = 1 10 sin ( t ) d t , d y = 10 cos ( t ) d t dx = 1 - 10\sin(t) dt, dy = 10\cos(t) dt , we can now transform the above path integral into one for the variable t : t:

I = 1 2 π 0 10 π ( 10 sin ( t ) ) ( 1 10 sin ( t ) ) ( t + 10 cos ( t ) ) 2 + ( 10 sin ( t ) ) 2 d t + ( t + 10 cos ( t ) ) ( 10 cos ( t ) ) ( t + 10 cos ( t ) ) 2 + ( 10 sin ( t ) ) 2 d t I = \frac{1}{2\pi} \cdot \int_{0}^{10\pi} \frac{(-10\sin(t))(1-10\sin(t))}{(t+10\cos(t))^2 + (10\sin(t))^2} dt + \frac{(t+10\cos(t))(10\cos(t))}{(t+10\cos(t))^2 + (10\sin(t))^2} dt ;

or I = 1 2 π 0 10 π 100 sin 2 ( t ) + 100 cos 2 ( t ) 10 sin ( t ) + 10 t cos ( t ) 100 sin 2 ( t ) + 100 cos 2 ( t ) + 20 t cos ( t ) + t 2 d t ; I = \frac{1}{2\pi} \int_{0}^{10\pi} \frac{100\sin^{2}(t) + 100\cos^{2}(t) - 10\sin(t) + 10t\cos(t)}{100\sin^2(t) + 100\cos^{2}(t) + 20t\cos(t) + t^2} dt;

or I = 1 2 π 0 10 π 100 10 sin ( t ) + 10 t cos ( t ) 100 + 20 t cos ( t ) + t 2 d t ; I = \frac{1}{2\pi} \int_{0}^{10\pi} \frac{100 - 10\sin(t) + 10t\cos(t)}{100 + 20t\cos(t) + t^2} dt;

or I = 1 2 π [ t 2 + arctan ( ( t + 10 ) cot ( t / 2 ) t 10 ] 0 10 π ; I = \frac{1}{2\pi} \cdot [\frac{t}{2} + \arctan(\frac{(t+10)\cot(t/2)}{t-10}]|_{0}^{10\pi};

or I = 1 2 π [ 5 π + arctan ( π + 1 π 1 cot ( 5 π ) ) 0 arctan ( cot ( 0 ) ) ] ; I = \frac{1}{2\pi} \cdot [5\pi + \arctan(\frac{\pi+1}{\pi-1}\cot(5\pi)) - 0 - \arctan(-\cot(0))];

or I = 1 2 π ( 5 π π 2 π 2 ) ; I = \frac{1}{2\pi} \cdot (5\pi - \frac{\pi}{2} - \frac{\pi}{2});

or I = 4 π 2 π = 2 . I = \frac{4\pi}{2\pi} = \boxed{2}.

Have a great 2021, Sir Otto!!

tom engelsman - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...