Find over the curve parameterised by for .
(from a recent calculus exam)
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Here's a solution for yah, Sir Otto!
Taking d x = 1 − 1 0 sin ( t ) d t , d y = 1 0 cos ( t ) d t , we can now transform the above path integral into one for the variable t :
I = 2 π 1 ⋅ ∫ 0 1 0 π ( t + 1 0 cos ( t ) ) 2 + ( 1 0 sin ( t ) ) 2 ( − 1 0 sin ( t ) ) ( 1 − 1 0 sin ( t ) ) d t + ( t + 1 0 cos ( t ) ) 2 + ( 1 0 sin ( t ) ) 2 ( t + 1 0 cos ( t ) ) ( 1 0 cos ( t ) ) d t ;
or I = 2 π 1 ∫ 0 1 0 π 1 0 0 sin 2 ( t ) + 1 0 0 cos 2 ( t ) + 2 0 t cos ( t ) + t 2 1 0 0 sin 2 ( t ) + 1 0 0 cos 2 ( t ) − 1 0 sin ( t ) + 1 0 t cos ( t ) d t ;
or I = 2 π 1 ∫ 0 1 0 π 1 0 0 + 2 0 t cos ( t ) + t 2 1 0 0 − 1 0 sin ( t ) + 1 0 t cos ( t ) d t ;
or I = 2 π 1 ⋅ [ 2 t + arctan ( t − 1 0 ( t + 1 0 ) cot ( t / 2 ) ] ∣ 0 1 0 π ;
or I = 2 π 1 ⋅ [ 5 π + arctan ( π − 1 π + 1 cot ( 5 π ) ) − 0 − arctan ( − cot ( 0 ) ) ] ;
or I = 2 π 1 ⋅ ( 5 π − 2 π − 2 π ) ;
or I = 2 π 4 π = 2 .