Golden base

Let ϕ = 1 + 5 2 \phi = \frac{1+\sqrt{5}}2 . Which of these is a representation of ϕ 2 \frac \phi2 in base ϕ ? \phi?

0.100010001000 0.100010001000\ldots 0.100100100100 0.100100100100\ldots 0.10101010 0.10101010\ldots 0.111111 0.111111\ldots

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider that ϕ \phi is one of the roots of x 2 x 1 = 0 x^2-x-1=0

So, ϕ 2 = ϕ + 1 \phi^2=\phi+1

ϕ 3 = ϕ 2 + ϕ = 2 ϕ + 1 \phi^3=\phi^2+\phi=2\phi+1

ϕ 3 1 = 2 ϕ \phi^3-1=2\phi

1 ϕ 3 = 2 ϕ 2 1-\phi^{-3}=2\phi^{-2}

1 1 ϕ 3 = ϕ 2 2 \dfrac{1}{1-\phi^{-3}} = \dfrac{\phi^2}{2}

1 + ϕ 3 + ϕ 6 + ϕ 9 + = ϕ 2 2 1+\phi^{-3}+\phi^{-6}+\phi^{-9}+\cdots=\dfrac{\phi^2}{2}

ϕ 1 + ϕ 4 + ϕ 7 + = ϕ 2 \phi^{-1}+\phi^{-4}+\phi^{-7}+\cdots=\dfrac{\phi}{2}

hence the answer.

Michael Mendrin
Mar 12, 2016

Let ϕ = 1 + 5 2 \phi =\dfrac { 1+\sqrt { 5 } }{ 2 }

Then we consider the following family of infinite sums

k = 0 ϕ ( n k + 1 ) = ϕ n ϕ n + 1 1 \displaystyle \sum _{ k=0 }^{ \infty }{ { \phi }^{ -\left( nk+1 \right) } } =\dfrac { { \phi }^{ n } }{ { \phi }^{ n+1 }-1 }

so that we seek integer n n such that

ϕ n ϕ n + 1 1 = ϕ 2 \dfrac { { \phi }^{ n } }{ { \phi }^{ n+1 }-1 } =\dfrac { \phi }{ 2 }

or

ϕ n 2 ( ϕ 2 1 ) 1 = 0 { \phi }^{ n-2 }({ \phi }^{ 2 }-1)-1=0

Since ϕ \phi satisfies

ϕ 2 ϕ 1 = ϕ ( ϕ 1 ) 1 = 0 { \phi }^{ 2 }-\phi -1=\phi (\phi -1)-1=0

and

ϕ 2 2 = ϕ 1 { \phi }^{ 2 }-2=\phi -1

we end up with n = 3 n=3

wrong way of doing it tho

Jyyon jj - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...