A = 8 1 3 + n = 0 ∑ ∞ 4 2 n + 3 n ! ( n + 2 ) ! ( − 1 ) n + 1 ( 2 n + 1 ) !
For A as defined above, find the value of A 2 − A .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A Nice approach!!!
n = 0 ∑ ∞ 4 2 n + 3 n ! ( n + 2 ) ! ( − 1 ) n + 1 ( 2 n + 1 ) ! = 4 1 n = 0 ∑ ∞ 2 ( n + 2 ) ( n + 1 ) ! 2 ( − 1 6 1 ) n + 1 ( 2 n + 2 ) ! = 8 1 n = 0 ∑ ∞ n + 2 ( − 1 6 1 ) n + 1 ( n + 1 2 n + 2 ) = − 2 n = 1 ∑ ∞ n + 1 ( − 1 6 1 ) n + 1 ( n 2 n ) = − 2 ∫ 0 − 1 6 1 ( n = 0 ∑ ∞ t n ( n 2 n ) − 1 ) d t = − 2 ∫ 0 − 1 6 1 ( 1 − 4 t 1 − 1 ) d t = − 2 [ 2 − 1 1 − 4 t − t ] 0 − 1 6 1 = 2 5 − 8 9
8 1 3 + n = 0 ∑ ∞ 4 2 n + 3 n ! ( n + 2 ) ! ( − 1 ) n + 1 ( 2 n + 1 ) ! = 8 1 3 + 2 5 − 8 9 = 2 1 + 5 = φ
φ 2 − φ = 1
n = 0 ∑ ∞ 4 2 n + 3 n ! ( n + 2 ) ! ( − 1 ) n + 1 ( 2 n + 1 ) ! = = = = = = = = = n = 0 ∑ ∞ 4 2 n + 3 Γ ( n + 1 ) Γ ( n + 3 ) ( − 1 ) n + 1 Γ ( 2 n + 2 ) π 1 n = 0 ∑ ∞ 4 2 n + 3 Γ ( n + 1 ) Γ ( n + 3 ) ( − 1 ) n + 1 2 2 n + 1 Γ ( n + 2 3 ) Γ ( n + 1 ) π 1 n = 0 ∑ ∞ 2 2 n + 5 Γ ( n + 3 ) Γ ( 2 3 ) ( − 1 ) n + 1 Γ ( n + 2 3 ) Γ ( 2 3 ) Γ ( 2 3 ) π 1 n = 0 ∑ ∞ 2 2 n + 5 ( − 1 ) n + 1 B ( n + 2 3 ; 2 3 ) 2 5 Γ ( 2 3 ) π 1 n = 0 ∑ ∞ 2 2 n ( − 1 ) n + 1 ∫ 0 1 t n + 2 1 ( 1 − t ) 2 1 d t 2 5 Γ ( 2 3 ) π ( − 1 ) ∫ 0 1 ( 1 − t ) 2 1 t 2 1 n = 0 ∑ ∞ 4 n ( − 1 ) n t n d t 2 5 Γ ( 2 3 ) π ( − 4 ) ∫ 0 1 4 + t t ( 1 − t ) d t 2 5 Γ ( 2 3 ) π ( − 4 ) ( 2 9 − 4 5 ) π 8 4 5 − 9 (Duplication formula) Γ ( 2 n + 2 ) = π 2 2 n + 1 Γ ( n + 2 3 ) Γ ( n + 1 ) Multiply both numerator and denominator by Γ ( 2 3 ) Γ ( x + y ) Γ ( x ) Γ ( y ) = B ( x ; y ) Beta function B ( x ; y ) = ∫ 0 1 t x − 1 ( 1 − t ) y − 1 d t Geometric series n = 0 ∑ ∞ 4 n ( − 1 ) n t n = t + 4 4 By trig and U substitution ∫ 0 1 4 + t t ( 1 − t ) d t = ( 2 9 − 4 5 ) π substitute Γ ( 2 3 ) = 2 π A = 8 1 3 + 8 4 5 − 9 = 2 5 + 1 = φ ( Golden Ratio ) Therefore we get φ 2 − φ = 1
Problem Loading...
Note Loading...
Set Loading...
My view using generating function of Central binomial coefficients. S = 6 4 1 n = 0 ∑ ∞ 1 6 n n ! ( n + 1 ) ! ( − 1 ) n + 1 ( 2 n + 1 ) ! = 6 4 1 n = 0 ∑ ∞ 1 6 n ( n + 1 ) ( n + 2 ) ( − 1 ) n + 1 ( 2 n + 1 ) ( n 2 n ) = 6 4 1 n = 0 ∑ ∞ 1 6 n ( − 1 ) n + 1 ( n + 2 3 − n + 1 1 ) ( n 2 n ) Recall that the generating function for central binomial coefficients and Catalan number ( which can be easily derived from CBC generating function). For ∣ x ∣ < 4 1 n = 0 ∑ ∞ ( n 2 n ) x n = 1 − 4 x 1 ⋯ ( 1 ) , n = 0 ∑ ∞ n + 1 1 ( n 2 n ) x n = 1 + 1 − 4 x 2 ⋯ ( 2 ) set x = − 1 6 1 in ( 2 ) , we get then − n = 0 ∑ ∞ 1 6 n ( n + 1 ) ( − 1 ) n ( n 2 n ) = − 2 + 5 4 = 8 − 4 5 Similarly multiple by x in equation first and then integrate it from x = 0 to x = − 1 6 1 . − n = 0 ∑ ∞ 1 6 n ( n + 2 ) ( − 1 ) n + 2 ( n 2 n ) = − ∫ 0 − 1 6 1 1 − 4 x 2 5 6 x d x = 3 4 ( 7 5 − 1 6 ) and hence 1 8 3 + S = 1 8 3 + 6 4 1 ( 2 8 5 − 6 4 − 8 + 4 5 ) = 2 1 + 5 = ϕ giving us ϕ 2 − ϕ = ( ϕ + 1 ) − ϕ = 1 .