Golden series

Calculus Level 4

A = 13 8 + n = 0 ( 1 ) n + 1 ( 2 n + 1 ) ! 4 2 n + 3 n ! ( n + 2 ) ! A =\frac { 13 }{ 8 } +\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 }\left( 2n+1 \right) ! }{ { 4 }^{ 2n+3 }n!\left( n+2 \right) ! } }

For A A as defined above, find the value of A 2 A A^2-A .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Naren Bhandari
May 28, 2020

My view using generating function of Central binomial coefficients. S = 1 64 n = 0 ( 1 ) n + 1 ( 2 n + 1 ) ! 1 6 n n ! ( n + 1 ) ! = 1 64 n = 0 ( 1 ) n + 1 ( 2 n + 1 ) 1 6 n ( n + 1 ) ( n + 2 ) ( 2 n n ) = 1 64 n = 0 ( 1 ) n + 1 1 6 n ( 3 n + 2 1 n + 1 ) ( 2 n n ) S=\frac{1}{64}\sum_{n=0}^{\infty}\frac{(-1)^{n+1}(2n+1)!}{16^n n!(n+1)!}=\frac{1}{64}\sum_{n=0}^{\infty}\frac{(-1)^{n+1}(2n+1)}{16^n (n+1)(n+2)}{ 2n\choose n}\\=\frac{1}{64}\sum_{n=0}^{\infty}\frac{(-1)^{n+1}}{16^n}\left(\frac{3}{n+2}-\frac{1}{n+1}\right){2n\choose n} Recall that the generating function for central binomial coefficients and Catalan number ( which can be easily derived from CBC generating function). For x < 1 4 |x|<\frac{1}{4} n = 0 ( 2 n n ) x n = 1 1 4 x ( 1 ) , n = 0 1 n + 1 ( 2 n n ) x n = 2 1 + 1 4 x ( 2 ) \sum_{n=0}^{\infty}{2n\choose n}x^n=\frac{1}{\sqrt{1-4x}}\cdots (1),\; \; \sum_{n=0}^{\infty}\frac{1}{n+1}{2n\choose n}x^n=\frac{2}{1+\sqrt{1-4x}}\cdots(2) set x = 1 16 x=-\frac{1}{16} in ( 2 ) (2) , we get then n = 0 ( 1 ) n 1 6 n ( n + 1 ) ( 2 n n ) = 4 2 + 5 = 8 4 5 -\sum_{n=0}^{\infty}\frac{(-1)^{n}}{16^n(n+1)}{2n\choose n}=-\frac{4}{2+\sqrt 5}=8-4\sqrt 5 Similarly multiple by x x in equation first and then integrate it from x = 0 x=0 to x = 1 16 x=-\frac{1}{16} . n = 0 ( 1 ) n + 2 1 6 n ( n + 2 ) ( 2 n n ) = 0 1 16 256 x 1 4 x d x = 4 3 ( 7 5 16 ) -\sum_{n=0}^{\infty}\frac{(-1)^{n+2}}{16^n(n+2)}{2n\choose n}=-\int_0^{-\frac{1}{16}}\frac{256x}{\sqrt{1-4x}}dx=\frac{4}{3}\left(7\sqrt 5 -16\right) and hence 3 18 + S = 3 18 + 1 64 ( 28 5 64 8 + 4 5 ) = 1 + 5 2 = ϕ \frac{3}{18}+S= \frac{3}{18}+\frac{1}{64}\left(28\sqrt 5 -64-8+4\sqrt 5\right)=\frac{1+\sqrt 5}{2}=\phi giving us ϕ 2 ϕ = ( ϕ + 1 ) ϕ = 1 \phi^2-\phi=(\phi+1)-\phi=1 .

A Nice approach!!!

Aaghaz Mahajan - 1 year ago

Log in to reply

Thank you !!

Naren Bhandari - 1 year ago
Wesley Low
Aug 1, 2020

n = 0 ( 1 ) n + 1 ( 2 n + 1 ) ! 4 2 n + 3 n ! ( n + 2 ) ! \sum_{n=0}^{\infty}\frac{\left(-1\right)^{n+1}\left(2n+1\right)!}{4^{2n+3}n!\left(n+2\right)!} = 1 4 n = 0 ( 1 16 ) n + 1 ( 2 n + 2 ) ! 2 ( n + 2 ) ( n + 1 ) ! 2 =\frac{1}{4}\sum_{n=0}^{\infty}\frac{\left(-\frac{1}{16}\right)^{n+1}\left(2n+2\right)!}{2\left(n+2\right)\left(n+1\right)!^{2}} = 1 8 n = 0 ( 1 16 ) n + 1 n + 2 ( 2 n + 2 n + 1 ) =\frac{1}{8}\sum_{n=0}^{\infty}\frac{\left(-\frac{1}{16}\right)^{n+1}}{n+2}{2n+2\choose n+1} = 2 n = 1 ( 1 16 ) n + 1 n + 1 ( 2 n n ) =-2\sum_{n=1}^{\infty}\frac{\left(-\frac{1}{16}\right)^{n+1}}{n+1}{2n\choose n} = 2 0 1 16 ( n = 0 t n ( 2 n n ) 1 ) d t =-2\int_{0}^{-\frac{1}{16}}\left(\sum_{n=0}^{\infty}t^{n}{2n\choose n}-1\right)dt = 2 0 1 16 ( 1 1 4 t 1 ) d t =-2\int_{0}^{-\frac{1}{16}}\left(\frac{1}{\sqrt{1-4t}}-1\right)dt = 2 [ 1 2 1 4 t t ] 0 1 16 =-2\left[\frac{-1}{2}\sqrt{1-4t}-t\right]_{0}^{-\frac{1}{16}} = 5 2 9 8 =\frac{\sqrt{5}}{2}-\frac{9}{8}

13 8 + n = 0 ( 1 ) n + 1 ( 2 n + 1 ) ! 4 2 n + 3 n ! ( n + 2 ) ! \frac{13}{8}+\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n+1}\left(2n+1\right)!}{4^{2n+3}n!\left(n+2\right)!} = 13 8 + 5 2 9 8 =\frac{13}{8}+\frac{\sqrt{5}}{2}-\frac{9}{8} = 1 + 5 2 = φ =\frac{1+\sqrt{5}}{2}=\varphi

φ 2 φ = 1 \varphi^{2}-\varphi=\boxed{1}

Syed Shahabudeen
May 28, 2020

n = 0 ( 1 ) n + 1 ( 2 n + 1 ) ! 4 2 n + 3 n ! ( n + 2 ) ! = n = 0 ( 1 ) n + 1 Γ ( 2 n + 2 ) 4 2 n + 3 Γ ( n + 1 ) Γ ( n + 3 ) (Duplication formula) Γ ( 2 n + 2 ) = 2 2 n + 1 π Γ ( n + 3 2 ) Γ ( n + 1 ) = 1 π n = 0 ( 1 ) n + 1 2 2 n + 1 Γ ( n + 3 2 ) Γ ( n + 1 ) 4 2 n + 3 Γ ( n + 1 ) Γ ( n + 3 ) Multiply both numerator and denominator by Γ ( 3 2 ) = 1 π n = 0 ( 1 ) n + 1 Γ ( n + 3 2 ) Γ ( 3 2 ) 2 2 n + 5 Γ ( n + 3 ) Γ ( 3 2 ) Γ ( x ) Γ ( y ) Γ ( x + y ) = B ( x ; y ) = 1 Γ ( 3 2 ) π n = 0 ( 1 ) n + 1 B ( n + 3 2 ; 3 2 ) 2 2 n + 5 Beta function B ( x ; y ) = 0 1 t x 1 ( 1 t ) y 1 d t = 1 2 5 Γ ( 3 2 ) π n = 0 ( 1 ) n + 1 2 2 n 0 1 t n + 1 2 ( 1 t ) 1 2 d t = ( 1 ) 2 5 Γ ( 3 2 ) π 0 1 ( 1 t ) 1 2 t 1 2 n = 0 ( 1 ) n t n 4 n d t Geometric series n = 0 ( 1 ) n t n 4 n = 4 t + 4 = ( 4 ) 2 5 Γ ( 3 2 ) π 0 1 t ( 1 t ) 4 + t d t By trig and U substitution 0 1 t ( 1 t ) 4 + t d t = ( 9 4 5 2 ) π = ( 4 ) 2 5 Γ ( 3 2 ) π ( 9 4 5 2 ) π substitute Γ ( 3 2 ) = π 2 = 4 5 9 8 \begin{aligned} \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 }\left( 2n+1 \right) ! }{ { 4 }^{ 2n+3 }n!\left( n+2 \right) ! } } =&\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 }\Gamma \left( 2n+2 \right) }{ { 4 }^{ 2n+3 }\Gamma \left( n+1 \right) \Gamma \left( n+3 \right) } } &&&&&&&&&&&& \textcolor{#20A900}{\textrm{(Duplication formula)} \quad\Gamma \left( 2n+2 \right) =\frac { { 2 }^{ 2n+1 } }{ \sqrt { \pi } } \Gamma \left( n+\frac { 3 }{ 2 } \right) \Gamma \left( n+1 \right) } \\=&\frac { 1 }{ \sqrt { \pi } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 }{ 2 }^{ 2n+1 }\Gamma \left( n+\frac { 3 }{ 2 } \right) \Gamma \left( n+1 \right) }{ { 4 }^{ 2n+3 }\Gamma \left( n+1 \right) \Gamma \left( n+3 \right)} }&&&&&&&&&&&& \textcolor{#20A900}{\textrm{Multiply both numerator and denominator by }\Gamma \left( \frac { 3 }{ 2 } \right) } \\=&\frac { 1 }{ \sqrt { \pi } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 }\Gamma \left( n+\frac { 3 }{ 2 } \right) \Gamma \left( \frac { 3 }{ 2 } \right) }{ 2^{ 2n+5 }\Gamma \left( n+3 \right) \Gamma \left( \frac { 3 }{ 2 } \right) } } &&&&&&&&&&&&\textcolor{#BA33D6}{ \frac { \Gamma \left( x \right) \Gamma \left( y \right) }{ \Gamma \left( x+y \right) } =B\left( x;y \right)} \\=&\frac { 1 }{ \Gamma \left( \frac { 3 }{ 2 } \right) \sqrt { \pi } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 }B\left( n+\frac { 3 }{ 2 } ;\frac { 3 }{ 2 } \right) }{ 2^{ 2n+5 } } } &&&&&&&&&&&& \textcolor{#BA33D6} {\textrm{Beta function}\quad B\left( x;y \right) =\int _{ 0 }^{ 1 }{ { t }^{ x-1 }{ \left( 1-t \right) }^{ y-1 }dt } } \\=&\frac { 1 }{ { 2 }^{ 5 }\Gamma \left( \frac { 3 }{ 2 } \right) \sqrt { \pi } } \sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n+1 } }{ 2^{ 2n } } \int _{ 0 }^{ 1 }{ { t }^{ n+\frac { 1 }{ 2 } }{ \left( 1-t \right) }^{ \frac { 1 }{ 2 } }dt } }\\=&\frac { \left( -1 \right) }{ { 2 }^{ 5 }\Gamma \left( \frac { 3 }{ 2 } \right) \sqrt { \pi } } \int _{ 0 }^{ 1 }{ { \left( 1-t \right) }^{ \frac { 1 }{ 2 } } } { t }^{ \frac { 1 }{ 2 } }\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ t }^{ n } }{ { 4 }^{ n } } dt } &&&&&&&&&&&& \textcolor{#BA33D6}{\textrm{Geometric series}\quad\sum _{ n=0 }^{ \infty }{ \frac { { \left( -1 \right) }^{ n }{ t }^{ n } }{ { 4 }^{ n } } =\frac { 4 }{ t+4 } } }\\=&\frac { \left( -4 \right) }{ { 2 }^{ 5 }\Gamma \left( \frac { 3 }{ 2 } \right) \sqrt { \pi } } \int _{ 0 }^{ 1 } \frac { \sqrt { t\left( 1-t \right) } }{ 4+t } dt &&&&&&&&&&&& \textcolor{#20A900}{\textrm{By trig and U substitution} \int _{ 0 }^{ 1 } \frac { \sqrt { t\left( 1-t \right) } }{ 4+t } dt=\left( \frac { 9-4\sqrt { 5 } }{ 2 } \right) \pi }\\=&\frac { \left( -4 \right) }{ { 2 }^{ 5 }\Gamma \left( \frac { 3 }{ 2 } \right) \sqrt { \pi } } \left( \frac { 9-4\sqrt { 5 } }{ 2 } \right) \pi &&&&&&&&&&&& \textcolor{#20A900}{\textrm{substitute}\quad\Gamma \left( \frac { 3 }{ 2 } \right) =\frac { \sqrt { \pi } }{ 2 } }\\=&\frac { 4\sqrt { 5 } -9 }{ 8 } \end{aligned} A = 13 8 + 4 5 9 8 = 5 + 1 2 = φ ( Golden Ratio ) A=\frac { 13 }{ 8 } +\frac { 4\sqrt { 5 } -9 }{ 8 } =\frac { \sqrt { 5 } +1 }{ 2 } =\varphi(\textcolor{#CEBB00}{\textrm{Golden Ratio}} ) Therefore we get \textrm{Therefore we get} φ 2 φ = 1 \boxed{{ { \varphi } }^{ 2 }-\varphi =1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...