Golden Sum

Algebra Level 4

If i = 1 N ϕ i = 4180 + 6764 ϕ \displaystyle \sum_{i=1}^N \phi^i = 4180 + 6764\phi , where ϕ = 1 + 5 2 \phi=\frac{1+\sqrt{5}}{2} , what is N?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Mar 19, 2014

Because Bob recently posted an article linking golden ratio to Fibonacci numbers

This motivates me to find 4180 4180 and 6764 6764 in terms of Fibonacci numbers. Turns out F 19 = 4181 , F 20 = 6765 F_{19} = 4181, F_{20} = 6765

With the identity: ϕ n = F n 1 + F n ϕ \phi^n = F_{n-1} + F_n \phi , and ϕ 2 ϕ 1 = 0 \phi^2 - \phi - 1 = 0

F 19 + F 20 ϕ = ϕ 20 ( F 19 1 ) + ( F 20 1 ) ϕ = ϕ 20 1 ϕ 4180 + 6764 ϕ = ϕ 20 ( 1 + ϕ ) i = 1 N ϕ i = ϕ 20 ϕ 2 ϕ ( ϕ N 1 ) ϕ 1 = ϕ 20 ϕ 2 ϕ N 1 ϕ 1 = ϕ 19 ϕ ϕ N 1 = ( ϕ 19 ϕ ) ( ϕ 1 ) = ϕ ( ϕ 18 1 ) ( ϕ 1 ) = ( ϕ 18 1 ) ( ϕ 2 ϕ ) = ( ϕ 18 1 ) ( 1 ) N = 18 \begin{aligned} F_{19} + F_{20} \phi & = & \phi^{20} \\ (F_{19} - 1) + (F_{20} - 1)\phi & = & \phi^{20} - 1 - \phi \\ 4180 + 6764 \phi & = & \phi^{20} - (1 + \phi) \\ \displaystyle \sum_{i=1}^N \phi^i & = & \phi^{20} - \phi^2 \\ \frac {\phi \left ( \phi^N - 1 \right ) }{\phi - 1} & = & \phi^{20} - \phi^2 \\ \frac {\phi^N - 1 }{\phi - 1} & = & \phi^{19} - \phi \\ \phi^N - 1 & = & (\phi^{19} - \phi)(\phi - 1 ) \\ & = & \phi (\phi^{18} - 1)(\phi - 1 ) \\ & = & (\phi^{18} - 1)(\phi^2 - \phi ) \\ & = & (\phi^{18} - 1)(1) \\ N & = & \boxed{18} \\ \end{aligned}

Alternatively, we can get a simpler solution if we apply the identity F 1 + F 2 + F 3 + + F N 1 = F N 1 F_1 + F_2 + F_3 + \ldots + F_{N-1} = F_N - 1 , for N = 5 , 6 , 7 , N = 5,6,7, \ldots

Pi Han Goh - 7 years, 2 months ago

excellent solution pi han

Rishabh Jain - 7 years, 2 months ago
Christopher Boo
Mar 19, 2014

Fistly,

ϕ 1 = ϕ \phi^1=\phi

And for N 2 N\geq2 ,

ϕ N = F N ϕ + F N 1 \phi^N=F_N\phi+F_{N-1}

where F N F_N is the N-th Fibonacci number.

Given that

i = 1 N ϕ i = 6764 ϕ + 4180 \displaystyle \sum_{i=1}^N \phi^i=6764\phi+4180

Then clearly we have

F 1 + F 2 + . . . + F N 1 + F N = 6764 F_1+F_2+...+F_{N-1}+F_N=6764

F 1 + F 2 + . . . + F N 1 = 4180 F_1+F_2+...+F_{N-1}=4180

Subtract these two equation we have

F N = 2584 F_N=2584

Then N = 18 N=18 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...