Good Bye 2015 - 1

Geometry Level 4

3 tan 2 ( π 7 ) 1 tan 2 ( π 7 ) ÷ cos ( π 7 ) = ? \large \dfrac{3 - \tan^2\left( \dfrac\pi7 \right)}{1 - \tan^2\left( \dfrac\pi7 \right)} \div \cos\left( \dfrac\pi7 \right) = \, ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ikkyu San
Mar 29, 2016

3 tan 2 ( π 7 ) 1 tan 2 ( π 7 ) ÷ cos ( π 7 ) = 1 cos ( π 7 ) ( 3 tan 2 ( π 7 ) 1 tan 2 ( π 7 ) ) = sec ( π 7 ) ( ( 1 tan 2 ( π 7 ) ) + 2 1 tan 2 ( π 7 ) ) = sec ( π 7 ) ( 1 + 2 1 sin 2 ( π 7 ) cos 2 ( π 7 ) ) ( cos 2 ( π 7 ) cos 2 ( π 7 ) ) = sec ( π 7 ) ( 1 + 2 cos 2 ( π 7 ) cos 2 ( π 7 ) sin 2 ( π 7 ) ) = sec ( π 7 ) ( 1 + 2 cos 2 ( π 7 ) 2 cos 2 ( π 7 ) 1 ) = sec ( π 7 ) ( 1 + ( 2 cos 2 ( π 7 ) 1 ) + 1 2 cos 2 ( π 7 ) 1 ) = sec ( π 7 ) ( 2 + 1 cos ( 2 π 7 ) ) = 2 sec ( π 7 ) + sec ( π 7 ) sec ( 2 π 7 ) \begin{aligned}\begin{aligned}\dfrac{3-\tan^2{\left(\frac{\pi}7\right)}}{1-\tan^2{\left(\frac{\pi}7\right)}}\div\cos\left(\frac{\pi}7\right)=&\ \dfrac1{\cos\left(\frac{\pi}7\right)}\left(\dfrac{3-\tan^2{\left(\frac{\pi}7\right)}}{1-\tan^2{\left(\frac{\pi}7\right)}}\right)\\=&\ \sec\left(\frac{\pi}7\right)\left(\dfrac{\left(1-\tan^2{\left(\frac{\pi}7\right)}\right)+2}{1-\tan^2{\left(\frac{\pi}7\right)}}\right)\\=&\ \sec\left(\frac{\pi}7\right)\left(1+\dfrac2{1-\dfrac{\sin^2{\left(\frac{\pi}7\right)}}{\cos^2{\left(\frac{\pi}7\right)}}}\right)\left(\dfrac{\cos^2\left(\frac{\pi}7\right)}{\cos^2\left(\frac{\pi}7\right)}\right)\\=&\ \sec\left(\frac{\pi}7\right)\left(1+\dfrac{2\cos^2{\left(\frac{\pi}7\right)}}{\cos^2{\left(\frac{\pi}7\right)}-\sin^2{\left(\frac{\pi}7\right)}}\right)\\=&\ \sec\left(\frac{\pi}7\right)\left(1+\dfrac{2\cos^2{\left(\frac{\pi}7\right)}}{2\cos^2{\left(\frac{\pi}7\right)}-1}\right)\\=&\ \sec\left(\frac{\pi}7\right)\left(1+\dfrac{\left(2\cos^2{\left(\frac{\pi}7\right)}-1\right)+1}{2\cos^2{\left(\frac{\pi}7\right)}-1}\right)\\=&\ \sec\left(\frac{\pi}7\right)\left(2+\dfrac1{\cos{\left(\frac{2\pi}7\right)}}\right)\\=&\ 2\sec{\left(\frac{\pi}7\right)}+\sec{\left(\frac{\pi}7\right)}\sec{\left(\frac{2\pi}7\right)}\end{aligned}\end{aligned}

Let A = 2 sec ( π 7 ) + sec ( π 7 ) sec ( 2 π 7 ) A=2\sec{\left(\frac{\pi}7\right)}+\sec{\left(\frac{\pi}7\right)}\sec{\left(\frac{2\pi}7\right)}

Multiplying both sides with cos ( π 7 ) cos ( 2 π 7 ) \cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}

A cos ( π 7 ) cos ( 2 π 7 ) = 2 sec ( π 7 ) cos ( π 7 ) cos ( 2 π 7 ) + sec ( π 7 ) sec ( 2 π 7 ) cos ( π 7 ) cos ( 2 π 7 ) A cos ( π 7 ) cos ( 2 π 7 ) = 2 cos ( 2 π 7 ) + 1 A cos ( π 7 ) cos ( 2 π 7 ) = 2 ( 2 cos 2 ( π 7 ) 1 ) + 1 A cos ( π 7 ) cos ( 2 π 7 ) = 4 cos 2 ( π 7 ) 1 \begin{aligned}\begin{aligned}A\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}=&\ 2\sec{\left(\frac{\pi}7\right)}\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}+\sec{\left(\frac{\pi}7\right)}\sec{\left(\frac{2\pi}7\right)}\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}\\A\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}=&\ 2\cos{\left(\frac{2\pi}7\right)}+1\\A\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}=&\ 2\left(2\cos^2{\left(\frac{\pi}7\right)}-1\right)+1\\A\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}=&\ 4\cos^2{\left(\frac{\pi}7\right)}-1\end{aligned}\end{aligned}

Multiplying both sides with 4 sin ( π 7 ) 4\sin{\left(\frac{\pi}7\right)}

4 A cos ( π 7 ) cos ( 2 π 7 ) sin ( π 7 ) = 4 ( 4 cos 2 ( π 7 ) 1 ) ( sin ( π 7 ) ) 2 A ( 2 sin ( π 7 ) cos ( π 7 ) ) cos ( 2 π 7 ) = 4 sin ( 3 π 7 ) A ( 2 sin ( 2 π 7 ) cos ( 2 π 7 ) ) = 4 sin ( π 3 π 7 ) A sin ( 4 π 7 ) = 4 sin ( 4 π 7 ) A = 4 \begin{aligned}\begin{aligned}4A\cos{\left(\frac{\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}\sin{\left(\frac{\pi}7\right)}=&\ 4\left(4\cos^2{\left(\frac{\pi}7\right)}-1\right)\left(\sin{\left(\frac{\pi}7\right)}\right)\\2A\left(2\sin{\left(\frac{\pi}7\right)}\cos{\left(\frac{\pi}7\right)}\right)\cos{\left(\frac{2\pi}7\right)}=&\ 4\sin{\left(\frac{3\pi}7\right)}\\A\left(2\sin{\left(\frac{2\pi}7\right)}\cos{\left(\frac{2\pi}7\right)}\right)=&\ 4\sin{\left(\pi-\frac{3\pi}7\right)}\\A\sin{\left(\frac{4\pi}7\right)}=&\ 4\sin{\left(\frac{4\pi}7\right)}\\A=&\ 4\end{aligned}\end{aligned}

Thus, 3 tan 2 ( π 7 ) 1 tan 2 ( π 7 ) ÷ cos ( π 7 ) = 4 \dfrac{3-\tan^2{\left(\frac{\pi}7\right)}}{1-\tan^2{\left(\frac{\pi}7\right)}}\div\cos\left(\dfrac{\pi}7\right)=\boxed4


Notes:

1 cos θ = sec θ \dfrac1{\cos{\theta}}=\sec{\theta}

tan 2 θ = sin 2 θ cos 2 θ \tan^2{\theta}=\dfrac{\sin^2{\theta}}{\cos^2{\theta}}

sin 2 θ = 2 sin θ cos θ \sin{2\theta}=2\sin{\theta}\cos{\theta}

sin 3 θ = sin θ ( 4 cos 2 θ 1 ) \sin{3\theta}=\sin{\theta}(4\cos^2{\theta}-1)

cos 2 θ = cos 2 θ sin 2 θ = 2 cos 2 θ 1 \cos{2\theta}=\cos^2{\theta}-\sin^2{\theta}=2\cos^2{\theta}-1

Nicely explained!

Rishu Jaar - 3 years, 7 months ago

Let w = e 2 π i / 7 w=e^{2 \pi i/7} . We have the following equations: w 6 + w 5 + + w + 1 = 0 tan ( π 7 ) = w 1 i ( w + 1 ) cos ( π 7 ) = 1 2 1 + w \begin{aligned} w^6+w^5+\cdots+w+1&=0\\ \tan\left(\dfrac{\pi}{7}\right)&=\dfrac{w-1}{i(w+1)}\\ \cos\left(\dfrac{\pi}{7}\right)&=\dfrac{1}{2}\lvert 1+w \rvert \end{aligned}

Let the expression be S S . Note that S > 0 S>0 , then we have: S = 3 ( w 1 i ( w + 1 ) ) 2 1 ( w 1 i ( w + 1 ) ) 2 1 1 2 1 + w = 3 ( w + 1 ) 2 + ( w 1 ) 2 ( w + 1 ) 2 + ( w 1 ) 2 2 1 + w = 4 w 2 + 4 w + 4 2 w 2 + 2 2 1 + w = 4 ( w 2 + w + 1 ( w 2 + 1 ) 1 + w ) = 4 w 2 + w + 1 ( w 2 + 1 ) ( 1 + w ) = 4 w 2 + w + 1 w 3 + w 2 + w + 1 = 4 w 2 + w + 1 w 4 w 5 w 6 = 4 w 2 + w + 1 w 4 ( w 2 + w + 1 ) = 4 w 2 + w + 1 w 2 + w + 1 = 4 \begin{aligned} S&=\dfrac{3-\left(\frac{w-1}{i(w+1)}\right)^2}{1-\left(\frac{w-1}{i(w+1)}\right)^2} \cdot \dfrac{1}{\frac{1}{2}\lvert 1+w \rvert}\\ &=\dfrac{3(w+1)^2+(w-1)^2}{(w+1)^2+(w-1)^2} \cdot \dfrac{2}{\lvert 1+w \rvert}\\ &=\dfrac{4w^2+4w+4}{2w^2+2} \cdot \dfrac{2}{\lvert 1+w \rvert}\\ &=4\left(\dfrac{w^2+w+1}{(w^2+1) \lvert 1+w \rvert}\right)\\ &=4\left\lvert \dfrac{w^2+w+1}{(w^2+1)(1+w)} \right\rvert\\ &=4\left\lvert \dfrac{w^2+w+1}{w^3+w^2+w+1} \right\rvert\\ &=4\left\lvert \dfrac{w^2+w+1}{-w^4-w^5-w^6} \right\rvert\\ &=4\left\lvert \dfrac{w^2+w+1}{-w^4(w^2+w+1)} \right\rvert\\ &=4\left\lvert \dfrac{w^2+w+1}{w^2+w+1} \right\rvert\\ &=\boxed{4} \end{aligned}

A m a z i n g a p p r o a c h ! Amazing\ approach !

Rishu Jaar - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...