Good Bye 2017

1 × 3 × 5 × . . . × 2015 × 2017 1\times3\times5\times...\times2015\times2017 Find the last 2 digits of the number above.


Too easy? try Part 2


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 19, 2017

We need to find 2017 ! ! m o d 100 2017!! \bmod 100 . Since gcd ( 2017 ! ! , 100 ) 1 \gcd(2017!!, 100) \ne 1 , we have to consider the factors 4 and 25 of 100 separately using the Chinese remainder theorem.

Consider factor 4:

2017 ! ! 1 × 3 × 1 × 3 × 1 × 3 × 1 (mod 4) 3 504 m o d ϕ ( 4 ) (mod 4) Since gcd ( 3 , 4 ) = 1 , Euler’s theorem applies. 3 504 m o d 2 (mod 4) Euler’s function ϕ ( 4 ) = 2 1 (mod 4) \begin{aligned} 2017!! & \equiv 1 \times 3 \times 1 \times 3 \times 1 \cdots \times 3 \times 1 \text{ (mod 4)} \\ & \equiv 3^{504 \bmod \phi(4)} \text{ (mod 4)} & \small \color{#3D99F6} \text{Since }\gcd (3,4) = 1\text{, Euler's theorem applies.} \\ & \equiv 3^{504 \bmod 2} \text{ (mod 4)} & \small \color{#3D99F6} \text{Euler's function }\phi(4) = 2 \\ & \equiv 1 \text{ (mod 4)} \end{aligned}

2017 ! ! 4 n + 1 where n N \begin{aligned} \implies 2017!! & \equiv 4n + 1 & \small \color{#3D99F6} \text{where }n \in \mathbb N \end{aligned}

Consider factor 25:

2017 ! ! 0 (mod 25) 4 n + 1 0 (mod 25) n = 6 \begin{aligned} 2017!! & \equiv 0 \text{ (mod 25)} \\ 4n + 1 & \equiv 0 \text{ (mod 25)} \\ \implies n & = 6 \end{aligned}

2017 ! ! 4 ( 6 ) + 1 25 (mod 100) \implies 2017!! \equiv 4(6) + 1 \equiv \boxed{25} \text{ (mod 100)}

Wishing Everyone A Happy 2018. \Large \color{#69047E} \textit{Wishing Everyone A Happy 2018.}

Perfect solution

I Gede Arya Raditya Parameswara - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...