This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let N = 7 1 7 1 7 2 0 1 7 . We need to find N m o d 1 0 0 0 . Since 7, 17 and 2017 are primes, we can use Euler's theorem and the respective Carmichael lambda values are λ ( 1 0 0 0 ) = 1 0 0 , λ ( 1 0 0 ) = 2 0 and λ ( 2 0 ) = 4 . Then, we have:
N ≡ 7 1 7 1 7 2 0 1 7 m o d 4 m o d 2 0 m o d 1 0 0 (mod 1000) ≡ 7 1 7 1 7 1 m o d 2 0 m o d 1 0 0 (mod 1000) ≡ 7 1 7 1 7 m o d 1 0 0 (mod 1000) ≡ 7 1 7 1 7 m o d 1 0 0 (mod 1000) ≡ 7 ( 2 0 − 3 ) 1 5 ( 1 7 2 ) m o d 1 0 0 (mod 1000) ≡ 7 − 3 1 5 ( 8 9 ) m o d 1 0 0 (mod 1000) ≡ 7 3 ( 1 0 − 1 ) 7 ( 1 1 ) m o d 1 0 0 (mod 1000) ≡ 7 3 ( 6 9 ) ( 1 1 ) m o d 1 0 0 (mod 1000) ≡ 7 7 7 (mod 1000) ≡ 2 0 7 (mod 1000) By modular inverse (see note),
Note:
7 8 0 ⟹ 7 3 7 7 7 3 4 3 ( 7 7 7 ) 3 4 3 ( 7 ) 3 4 3 ( 2 0 7 ) ⟹ 7 7 7 ≡ ( 5 0 − 1 ) 4 0 ≡ 1 (mod 1000) ≡ 1 (mod 1000) ≡ 1 (mod 1000) ≡ 4 0 1 (mod 1000) ≡ 1 (mod 1000) ≡ 2 0 7 (mod 1000)