Such numbers always scare me!

The number of coprime ordered pairs for x 0 + y 0 = 17291729 x_0+y_0=17291729 is m m ;

The number of coprime ordered pairs for x 1 + y 1 = m x_1+y_1=m is n n ;

The number of coprime ordered pairs for x 2 + y 2 = n x_2+y_2=n is l l .

Find the value of ( m + n + l ) ( m o d 1729 ) (m+n+l) \pmod {1729} .


The answer is 1687.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mehul Chaturvedi
Jan 29, 2015

Please upvote if you like the solution


If x + y = n x+y=n and x , y x,y are coprime ordered pairs then the number of coprime ordered pairs of x , y x,y = ϕ n =\phi n where ϕ \phi is Euler's totient function

\Rightarrow x 0 + y 0 = 17291729 x_0+y_0=17291729 \therefore total ( x 0 , y 0 ) = m = ϕ 17291729 = 12690432 (x_0,y_0)=m=\phi 17291729=12690432

\Rightarrow x 1 + y 1 = 12690432 x_1+y_1=12690432 therefore total ( x 1 , y 1 ) = n = ϕ 12690432 = 3981312 (x_1,y_1)=n=\phi 12690432=3981312

\Rightarrow x 2 + y 2 = 3981312 x_2+y_2=3981312 therefore total ( x 2 , y 2 ) = l = ϕ 3981312 = 1327104 (x_2,y_2)=l=\phi 3981312=1327104

\Rightarrow m + n + l = 17998848 ( m + n + l ) m o d 1729 = 1687 \therefore m+n+l=17998848 \therefore (m+n+l) \mod 1729= 1687

Hence our answer is 1687 \huge{\boxed{\color{royalblue}{1687}}}


Note: Number is very poorly chosen it took me one hour to find totient function of all the numbers

Correct @Mehul Chaturvedi

Parth Lohomi - 6 years, 4 months ago

It's relatively easy to get the totient functions once we know that 1729 = 7 13 19 1729=7\cdot13\cdot19 and 10001 = 73 137 10001=73\cdot137

Factorise 17291729 = 7 13 19 73 137 17291729=7\cdot13\cdot19\cdot73\cdot137 to get: m = ϕ ( 17291729 ) = 6 12 18 72 136 = 2 10 3 6 17 m=\phi(17291729)=6\cdot12\cdot18\cdot72\cdot136=2^{10}\cdot3^6\cdot17

n = ϕ ( 2 10 3 6 17 ) = 2 9 ( 2 3 3 ) 16 = 2 14 3 5 n=\phi(2^{10}\cdot3^6\cdot17)=2^{9}\cdot(2\cdot3^3)\cdot16=2^{14}\cdot3^5

l = ϕ ( 2 14 3 5 ) = 2 13 ( 2 3 4 ) 16 = 2 14 3 4 l=\phi(2^{14}\cdot3^5)=2^{13}\cdot(2\cdot3^4)\cdot16=2^{14}\cdot3^4

We then get m + n + l = 2 10 3 4 ( 9 17 + 16 3 + 16 ) = 2 10 3 4 217 m+n+l=2^{10}\cdot3^4\cdot(9\cdot17+16\cdot3+16)=2^{10}\cdot3^4\cdot 217 .

We note that this is divisible by 7, so we just find the sum modulo 13 19 = 247 13\cdot19=247 . Finding that 2 10 3 4 217 205 ( m o d 247 ) 2^{10}\cdot3^4\cdot 217\equiv205\pmod{247} (Using some shortcuts like 217 30 ( m o d 247 ) , ( 2 10 36 ( m o d 247 ) 217\equiv\ -30\pmod{247},(2^{10}\equiv36\pmod{247} ), we apply CRT to get m + n + l 1687 ( m o d 1729 ) m+n+l\equiv\boxed{1687}\pmod{1729}

Jared Low - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...