Good looking problem!

How many numbers of sequence 1 × 1 1 \times 1 , 2 × 22 2 \times 22 , 3 × 333 3 \times 333 ..... are perfect squares ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Isaac Jiménez
Aug 27, 2014

Lets see, that the first number that work is 1. Now let find a greater one digit number. We can see the numbers are in the form k ( k k k . . . k k k ) k(kkk...kkk) with the second k s k`s written k k times. See k ( k k k . . . k k k ) = k 2 ( 111...111 ) k(kkk...kkk)={ k }^{ 2 }(111...111) with the 1 s 1`s written k k times. So, if k 2 ( 111...111 ) k^{ 2 }(111...111) is a square, then, ( 111...111 ) (111...111) is a square.

See 111...111 = 1 + 10 + . . . + 1 0 k 1 = 10 k 1 9 111...111=1+10+...+1{ 0 }^{ k-1 }=\frac { { 10 }^{ k }-1 }{ 9 } ; so 10 k 1 9 \frac { { 10 }^{ k }-1 }{ 9 } is a square if 1 0 k 1 1{ 0 }^{ k }-1 is also a square.

1 0 k 1 = 999...999 1{ 0 }^{ k }-1=999...999 with the 9 s 9`s written k k times. After seeing the quadratic residues m o d 10 mod 10 we know that the units digits is 3 3 or 7 7 . Now, we check the residues m o d 100 mod 100 with the units digits 3 3 and 7 7 and it should be 99.

7 2 49 , 17 2 89 , 27 2 29 , 37 2 69 , 47 2 9 , 57 2 49 , 67 2 89 , 77 2 29 , 87 2 69 , 97 2 9 m o d 100 { 7 }^{ 2 }\equiv 49,\quad { 17 }^{ 2 }\equiv 89,\quad { 27 }^{ 2 }\equiv 29,\quad { 37 }^{ 2 }\equiv 69,\quad { 47 }^{ 2 }\equiv 9,\quad { 57 }^{ 2 }\equiv 49,\quad { 67 }^{ 2 }\equiv 89,\quad { 77 }^{ 2 }\equiv 29,\quad { 87 }^{ 2 }\equiv 69,\quad { 97 }^{ 2 }\equiv 9 mod 100 so 7 7 doesn`t works.

3 2 9 , 13 2 69 , 23 2 29 , 33 2 89 , 43 2 49 , 53 2 9 , 63 2 69 , 73 2 29 , 83 2 89 , 93 2 49 m o d 100 { 3 }^{ 2 }\equiv 9,\quad { 13 }^{ 2 }\equiv 69,\quad { 23 }^{ 2 }\equiv 29,\quad { 33 }^{ 2 }\equiv 89,\quad { 43 }^{ 2 }\equiv 49,\quad { 53 }^{ 2 }\equiv 9,\quad { 63 }^{ 2 }\equiv 69,\quad { 73 }^{ 2 }\equiv 29,\quad { 83 }^{ 2 }\equiv 89,\quad { 93 }^{ 2 }\equiv 49\quad mod\quad 100 . So, 999...999 999...999 isn`t a square.

Now, let find a greater number , say N N is a number with d d digits. So, after some reasoning we can see that the first expression is N 2 ( 10 d 1 + 10 2 ( d 1 ) + . . . + 10 x ( d 1 ) ) { N }^{ 2 }({ 10 }^{ d-1 }+{ 10 }^{ 2(d-1) }+...+{ 10 }^{ x(d-1) }) . So, as N 2 { N }^{ 2 } is a square, then ( 10 d 1 + 10 2 ( d 1 ) + . . . + 10 x ( d 1 ) ) ({ 10 }^{ d-1 }+{ 10 }^{ 2(d-1) }+...+{ 10 }^{ x(d-1) }) must be a square. Now, see 10 d 1 + 10 2 ( d 1 ) + . . . + 10 x ( d 1 ) = 10 d 1 ( 1 + 10 + . . . + 10 x ) { 10 }^{ d-1 }+{ 10 }^{ 2(d-1) }+...+{ 10 }^{ x(d-1) }={ 10 }^{ d-1 }(1+10+...+{ 10 }^{ x }) , that is why it was important to see that 1 + 10 + . . . + 10 x 1+10+...+{ 10 }^{ x } isn`t a square.

Now, we have two cases:

1 ) 1) If, d d is odd, then clearly the expression isn`t a square.

2 ) 2) If d d is even then we can say that 10 d 1 ( 1 + 10 + . . . + 10 x ) = 10 10 2 m ( 1 + 10 + . . . + 10 x ) { 10 }^{ d-1 }(1+10+...+{ 10 }^{ x })=10*{ 10 }^{ 2 m}(1+10+...+{ 10 }^{ x }) . So the expression is a square if and only if 10 ( 1 + 10 + . . . + 10 x ) 10(1+10+...+{ 10 }^{ x }) but that is not possible because 10 10 and 1 + 10 + . . . + 10 x 1+10+...+{ 10 }^{ x } .

So, the only answer is 1 \boxed { 1 } .

Awesome problem :D

Isaac Jiménez - 6 years, 9 months ago

Log in to reply

thank you :D

Ramprasad Rakhonde - 6 years, 9 months ago

AWESOME!!!! soultion!!!!

Krishna Ar - 6 years, 9 months ago

Log in to reply

Thank you : )

Isaac Jiménez - 6 years, 9 months ago

you are the most inteligent mai friend, i only atinar the solution xdd

Pedrito Holiiss - 3 years, 2 months ago

La neta lo le entendi pero le doy upvote porque se que esta bien :v

Pedrito Holiiss - 3 years, 2 months ago
Ashish Menon
May 31, 2016

Only 1 × 1 1×1 is a perfect square. So, the answer is 1 \color{#69047E}{\boxed{1}} term is a perfect square.

Fox To-ong
Feb 9, 2015

that's very nice

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...