Good night!... again.

Algebra Level 4

( 3 2 a ) ( 3 2 b ) ( c a ) ( c b ) + ( 3 2 b ) ( 3 2 c ) ( a b ) ( a c ) + ( 3 2 c ) ( 3 2 a ) ( b c ) ( b a ) \dfrac{(3 - 2a)(3 - 2b)}{(c - a)(c - b)} + \dfrac{(3 - 2b)(3 - 2c)}{(a - b)(a - c)} + \dfrac{(3 - 2c)(3 - 2a)}{(b - c)(b - a)}

Simplify the above expression for distinct numbers a , b , a,b, and c . c.


This is part of the series " It's easy, believe me! "


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

David Vreken
Jun 22, 2018

Let x = 3 2 a x = 3 - 2a , y = 3 2 b y = 3 - 2b , and z = 3 2 c z = 3 - 2c . Then a b = 1 2 ( y x ) a - b = \frac{1}{2}(y - x) , a c = 1 2 ( z x ) a - c = \frac{1}{2}(z - x) , and b c = 1 2 ( z y ) b - c = \frac{1}{2}(z - y) . Substituting these values into the expression gives

x y 1 2 ( z x ) 1 2 ( z y ) + y z 1 2 ( y x ) 1 2 ( z x ) + z x 1 2 ( z y ) 1 2 ( y x ) \frac{xy}{-\frac{1}{2}(z - x) \cdot -\frac{1}{2}(z - y)} + \frac{yz}{\frac{1}{2}(y - x) \cdot \frac{1}{2}(z - x)} + \frac{zx}{\frac{1}{2}(z - y) \cdot -\frac{1}{2}(y - x)}

which simplifies to

4 [ x y ( z x ) ( z y ) + y z ( x y ) ( x z ) + x z ( y z ) ( y x ) ] 4\bigg[\frac{xy}{(z - x)(z - y)} + \frac{yz}{(x - y)(x - z)} + \frac{xz}{(y - z)(y - x)}\bigg] .

Using the identity x y ( z x ) ( z y ) + y z ( x y ) ( x z ) + x z ( y z ) ( y x ) = 1 \frac{xy}{(z - x)(z - y)} + \frac{yz}{(x - y)(x - z)} + \frac{xz}{(y - z)(y - x)} = 1 , the expression further simplifies to 4 \boxed{4} .

X X
Jun 22, 2018

Using Lagrange-Interpolation . ( 3 2 a ) ( 3 2 b ) ( c a ) ( c b ) + ( 3 2 b ) ( 3 2 c ) ( a b ) ( a c ) + ( 3 2 c ) ( 3 2 a ) ( b c ) ( b a ) \dfrac{(3 - 2a)(3 - 2b)}{(c - a)(c - b)} + \dfrac{(3 - 2b)(3 - 2c)}{(a - b)(a - c)} + \dfrac{(3 - 2c)(3 - 2a)}{(b - c)(b - a)} = 4 × ( 1.5 a ) ( 1.5 b ) ( c a ) ( c b ) + 4 × ( 1.5 b ) ( 1.5 c ) ( a b ) ( a c ) + 4 × ( 1.5 c ) ( 1.5 a ) ( b c ) ( b a ) =4\times\dfrac{(1.5 - a)(1.5- b)}{(c - a)(c - b)} +4\times \dfrac{(1.5 - b)(1.5 - c)}{(a - b)(a - c)} +4\times \dfrac{(1.5- c)(1.5- a)}{(b - c)(b - a)} Let f ( x ) = 4 × ( x a ) ( x b ) ( c a ) ( c b ) + 4 × ( x b ) ( x c ) ( a b ) ( a c ) + 4 × ( x c ) ( x a ) ( b c ) ( b a ) f(x)=4\times\dfrac{(x - a)(x- b)}{(c - a)(c - b)} +4\times \dfrac{(x - b)(x - c)}{(a - b)(a - c)} +4\times \dfrac{(x- c)(x- a)}{(b - c)(b - a)} Then f ( x ) f(x) is the lowest degree polynomial that passes through the points ( a , 4 ) , ( b , 4 ) , ( c , 4 ) (a,4),(b,4),(c,4) ,so f ( x ) = 4 , f ( 1.5 ) = 4 f(x)=4,f(1.5)=4

Chew-Seong Cheong
Jun 22, 2018

The expression is as follows:

S = c y c ( 3 2 a ) ( 3 2 b ) ( c a ) ( c b ) = c y c 4 ( 3 2 a ) ( 3 2 b ) ( c a ) ( c b ) Let x = 3 2 a , y = 3 2 b , z = 3 2 c = c y c 4 x y ( x z ) ( y z ) = 4 c y c x y ( y x ) ( x y ) ( y z ) ( z x ) = 4 × x y ( y x ) + y z ( z y ) + z x ( x z ) ( x y ) ( y z ) ( z x ) = 4 × x y 2 x 2 y + y z 2 y 2 z + z x 2 z 2 x x y 2 x 2 y + y z 2 y 2 z + z x 2 z 2 x = 4 \begin{aligned} S & = \sum_{cyc} \frac {(3-2a)(3-2b)}{(c-a)(c-b)} \\ & = \sum_{cyc} \frac {4\left(\frac 32-a\right)\left(\frac 32-b\right)}{(c-a)(c-b)} & \small \color{#3D99F6} \text{Let }x=\frac 32 - a, \ y=\frac 32 - b, \ z=\frac 32 - c \\ & = \sum_{cyc} \frac {4xy}{(x-z)(y-z)} \\ & = 4 \sum_{cyc} \frac {xy(y-x)}{(x-y)(y-z)(z-x)} \\ & = 4\times \frac {xy(y-x)+yz(z-y)+zx(x-z)}{(x-y)(y-z)(z-x)} \\ & = 4 \times \frac {xy^2-x^2y+yz^2-y^2z+zx^2-z^2x}{xy^2-x^2y+yz^2-y^2z+zx^2-z^2x} \\ & = \boxed{4} \end{aligned}

Thành Đạt Lê
Jun 22, 2018

You should know these:

1 ( c a ) ( c b ) + 1 ( a b ) ( a c ) + 1 ( b c ) ( b a ) = 0 \dfrac{1}{(c - a)(c - b)} + \dfrac{1}{(a - b)(a - c)} + \dfrac{1}{(b - c)(b - a)} = 0

a + b ( c a ) ( c b ) + b + c ( a b ) ( a c ) + c + a ( b c ) ( b a ) = 0 \dfrac{a + b}{(c - a)(c - b)} + \dfrac{b + c}{(a - b)(a - c)} + \dfrac{c + a}{(b - c)(b - a)} = 0

a b ( c a ) ( c b ) + b c ( a b ) ( a c ) + c a ( b c ) ( b a ) = 1 \dfrac{ab}{(c - a)(c - b)} + \dfrac{bc}{(a - b)(a - c)} + \dfrac{ca}{(b - c)(b - a)} = 1

What's the cleanest way to see that these statements are true?

E.g. For the first, it is equivalent to multiplying throughout by ( a b ) ( b c ) ( c a ) (a-b)(b-c)(c-a) , which gives ( b a ) + ( c b ) + ( a c ) = 0 (b-a) + (c-b) + ( a-c) = 0 .


As an aside, we also have

c ( c a ) ( c b ) + a ( a b ) ( a c ) + b ( b c ) ( b a ) = 0 \dfrac{c}{(c - a)(c - b)} + \dfrac{a}{(a - b)(a - c)} + \dfrac{b}{(b - c)(b - a)} = 0

which follows by multiplying the first by a + b + c a+b+c and subtracting the second.

Calvin Lin Staff - 2 years, 11 months ago

Log in to reply

Thanks! I will remember that.

Thành Đạt Lê - 2 years, 11 months ago

( 1 ) = ( b a ) + ( c b ) + ( a c ) ( a b ) ( b c ) ( c a ) = 0 (1) = \dfrac{(b - a) + (c - b) + (a - c)}{(a - b)(b - c)(c - a)} = 0

( 2 ) = ( b 2 a 2 ) + ( c 2 b 2 ) + ( a 2 c 2 ) ( a b ) ( b c ) ( c a ) = 0 (2) = -\dfrac{(b^2 - a^2) + (c^2 - b^2) + (a^2 - c^2)}{(a - b)(b - c)(c - a)} = 0

( 3 ) = a b ( b a ) + b c ( c b ) + c a ( a c ) ( a b ) ( b c ) ( c a ) (3) = \dfrac{ab(b - a) + bc(c - b) + ca(a - c)}{(a - b)(b - c)(c - a)}

We have that a b ( b a ) + b c ( c b ) + c a ( a c ) ab(b - a) + bc(c - b) + ca(a - c)

= a b ( b a ) b c ( a c ) b c ( b a ) + c a ( a c ) = ab(b - a) - bc(a - c) - bc(b - a) + ca(a - c)

= ( a b b c ) ( b a ) ( b c c a ) ( a c ) = (ab - bc)(b - a) - (bc - ca)(a - c)

= b ( a c ) ( b a ) c ( b a ) ( a c ) = b(a - c)(b - a) - c(b - a)(a - c)

= ( a c ) ( c b ) ( b a ) = -(a - c)(c - b)(b - a)

So ( 3 ) = ( a c ) ( c b ) ( b a ) ( a b ) ( b c ) ( c a ) = 1 (3) = \dfrac{-(a - c)(c - b)(b - a)}{(a - b)(b - c)(c - a)} = 1

Thành Đạt Lê - 2 years, 11 months ago
Alessandro Fenu
Jun 22, 2018

People are probably going to write a messy solution using cyclic sum and semplification. The problem has a numeric solution, so, as long as the denominators are not 0, one can put whatever numbers he want and still obtain the identity. Putting a=1, b=2, c=3, you get the solution, 4.

Of course, but it does not show that it works for all cases.

Chew-Seong Cheong - 2 years, 11 months ago

A slightly easier substitution is a = 3 2 a = \frac{3}{2} ( b , c 3 2 b, c \neq \frac{3}{2} ), which gives 0 + 4 + 0 0+4 + 0 .

Of course, you're assuming that the answer is a constant.

Calvin Lin Staff - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...