Good Stuff

Geometry Level pending

Consider two fixed points F F' and F F so that F F = 4 F' F = 4 .

Let M M be a variable point. Denote K K and L L to be the respective orthogonal projections of F F and F F' on the bisector of the angle F M ^ F F' \hat M F .

Assume that F M ^ L = F M ^ K = α F' \hat M L = F \hat M K = \alpha , and F K × F L = 3 FK \times F' L = 3 . Find ( M F M F ) 2 (MF - MF')^2 .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
May 6, 2016

U s i n g t h e r i g h t t r i a n g l e s M F K a n d M F L , Using\quad the\quad right\quad triangles\quad MFK\quad and\quad MF'L,\quad sin α = F L M F a n d sin α = F K M F \\ \sin { \alpha } =\frac { F'L }{ MF' } \quad and\quad \sin { \alpha } =\frac { FK }{ MF } \quad s o , sin 2 α = F K × F L M F × M F = 3 M F × M F . \\ so,\quad \sin ^{ 2 }{ \alpha } =\frac { FK\times F'L }{ MF\times MF' } =\frac { 3 }{ MF\times MF' } . U s i n g t h e c o s i n e l a w i n t r i a n g l e F M F , \\ Using\quad the\quad cosine\quad law\quad in\quad triangle\quad F'MF, F F 2 = M F 2 + M F 2 2 M F × M F cos 2 α \\ { FF' }^{ 2 }={ MF }^{ 2 }+{ MF' }^{ 2 }-2MF\times MF'\cos { 2\alpha } 16 = M F 2 + M F 2 6 sin 2 α ( cos 2 α ) 16={ MF }^{ 2 }+{ MF' }^{ 2 }-\frac { 6 }{ \sin ^{ 2 }{ \alpha } } (\cos { 2\alpha } )\\ N o w u s i n g t h e i d e n t i t y a 2 + b 2 = ( a b ) 2 + 2 a b a n d 1 cos 2 α = 2 sin 2 α ; Now\quad using\quad the\quad identity\quad { a }^{ 2 }+{ b }^{ 2 }={ (a-b) }^{ 2 }+2ab\\ and\quad 1-\cos { 2\alpha } =2\sin ^{ 2 }{ \alpha } ; 16 = ( M F M F ) 2 + 2 M F × M F 6 sin 2 α ( 1 2 sin 2 α ) \\ 16={ (MF-MF') }^{ 2 }+2MF\times MF'-\frac { 6 }{ \sin ^{ 2 }{ \alpha } } (1-2\sin ^{ 2 }{ \alpha } ) 4 + 6 sin 2 α = ( M F M F ) 2 + 2 ( 3 sin 2 α ) \\ 4+\frac { 6 }{ \sin ^{ 2 }{ \alpha } } ={ (MF-MF') }^{ 2 }+2(\frac { 3 }{ \sin ^{ 2 }{ \alpha } } ) ( M F M F ) 2 = 4 \\ \Longrightarrow { (MF-MF') }^{ 2 }=4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...