Consider two fixed points and so that .
Let be a variable point. Denote and to be the respective orthogonal projections of and on the bisector of the angle .
Assume that , and . Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
U s i n g t h e r i g h t t r i a n g l e s M F K a n d M F ′ L , sin α = M F ′ F ′ L a n d sin α = M F F K s o , sin 2 α = M F × M F ′ F K × F ′ L = M F × M F ′ 3 . U s i n g t h e c o s i n e l a w i n t r i a n g l e F ′ M F , F F ′ 2 = M F 2 + M F ′ 2 − 2 M F × M F ′ cos 2 α 1 6 = M F 2 + M F ′ 2 − sin 2 α 6 ( cos 2 α ) N o w u s i n g t h e i d e n t i t y a 2 + b 2 = ( a − b ) 2 + 2 a b a n d 1 − cos 2 α = 2 sin 2 α ; 1 6 = ( M F − M F ′ ) 2 + 2 M F × M F ′ − sin 2 α 6 ( 1 − 2 sin 2 α ) 4 + sin 2 α 6 = ( M F − M F ′ ) 2 + 2 ( sin 2 α 3 ) ⟹ ( M F − M F ′ ) 2 = 4 .