Goodwill Problem Of Calculus

Calculus Level 4

Let f : R R f : \mathbb R \rightarrow \mathbb R be a continuous function such that

f ( x ) = 2018 ( 1 + x 2 ) [ 1 + 0 x f ( t ) 1 + t 2 d t ] f\left( x \right) = 2018\left( 1 + { x }^{ 2 } \right) \left[ 1 + \displaystyle \int _{ 0 }^{ x }{ \frac { f\left( t \right) }{ 1 + { t }^{ 2 } } dt } \right]

Find the value of

1 e 2018 f ( 2018 ) f ( 2017 ) \frac { 1 }{ { e }^{ 2018 } } \cdot \frac { f\left( 2018 \right) }{ f\left( 2017 \right) }


The answer is 1.000991.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Aug 26, 2018

f ( x ) = 2018 ( 1 + x 2 ) ( 1 + 0 x f ( t ) 1 + t 2 d t ) f ( x ) 1 + x 2 = 2018 ( 1 + 0 x f ( t ) 1 + t 2 d t ) Let g ( x ) = f ( x ) 1 + x 2 g ( x ) = 2018 ( 1 + 0 x g ( t ) d t ) Differentiate both sides w.r.t. x g ( x ) = 2018 g ( x ) g ( x ) = k e 2018 x where k is a constant. \begin{aligned} f(x) & = 2018\left(1+x^2\right) \left(1+\int_0^x \frac {f(t)}{1+t^2} dt\right) \\ \frac {f(x)}{1+x^2} & = 2018 \left(1+\int_0^x \frac {f(t)}{1+t^2} dt\right) & \small \color{#3D99F6} \text{Let }g(x) = \frac {f(x)}{1+x^2} \\ g(x) & = 2018 \left(1+\int_0^x g(t)\ dt\right) & \small \color{#3D99F6} \text{Differentiate both sides w.r.t. }x \\ g'(x) & = 2018 g(x) \\ \implies g(x) & = {\color{#3D99F6}k} e^{2018x} & \small \color{#3D99F6} \text{where }k \text{ is a constant.} \end{aligned}

Now we have:

Q = 1 e 2018 f ( 2018 ) f ( 2017 ) Note that f ( x ) = ( 1 + x 2 ) g ( x ) = 1 e 2018 ( 1 + 201 8 2 ) g ( 2018 ) ( 1 + 201 7 2 ) g ( 2017 ) = ( 1 + 201 8 2 ) k e 201 8 2 ( 1 + 201 7 2 ) k e 2018 2017 + 2018 = 1 + 201 8 2 1 + 201 7 2 1.000992 \begin{aligned} Q & = \frac 1{e^{2018}} \cdot \frac {f(2018)}{f(2017)} & \small \color{#3D99F6} \text{Note that }f(x) = (1+x^2)g(x) \\ & = \frac 1{e^{2018}} \cdot \frac {(1+2018^2)g(2018)}{(1+2017^2)g(2017)} \\ & = \frac {(1+2018^2)ke^{2018^2}}{(1+2017^2)ke^{2018\cdot 2017+2018}} \\ & = \frac {1+2018^2}{1+2017^2} \\ & \approx \boxed{1.000992} \end{aligned}

D G
May 26, 2018

Let n = 2018 n = 2018 , g ( x ) = f ( x ) 1 + x 2 g(x) = \frac{f(x)}{1 + x^2} , f ( x ) = g ( x ) ( 1 + x 2 ) f(x) = g(x) (1 + x^2) . Then we have:

g ( x ) ( 1 + x 2 ) = n ( 1 + x 2 ) + n ( 1 + x 2 ) 0 x g ( t ) d t g(x) (1 + x^2) = n (1 + x^2) + n (1 + x^2) \int_0^x g(t) dt g ( x ) = n + n 0 x g ( t ) d t g(x) = n + n \int_0^x g(t) dt Take the Laplace transform of both sides: G ( s ) = n s + n G ( s ) s G(s) = \frac{n}{s} + n \frac{G(s)}{s} G ( s ) = n s n G(s) = \frac{n}{s-n} And the inverse transform: g ( x ) = n e n x g(x) = n e^{n x}

Therefore f ( x ) = n e n x ( x 2 + 1 ) f(x) = n e^{n x} (x^2+1) . Substituting values, the final answer is 814465 / 813658 814465/813658 .

Leonel Castillo
Aug 9, 2018

Rewrite the equation as 0 x f ( t ) 1 + t 2 d t = f ( x ) 2018 ( 1 + x 2 ) 1 \int_0^x \frac{f(t)}{1 + t^2} dt = \frac{f(x)}{2018(1+x^2)} - 1 Let's now define g ( x ) = 0 x f ( t ) 1 + t 2 d t g(x) = \int_0^x \frac{f(t)}{1 + t^2} dt . Because f f is a continuous function, g ( x ) g(x) is a differentiable function and by the fundamental theorem of calculus, the previous equation is actually a differential equation on g g . Explicitly, g = 1 2018 g 1 g = \frac{1}{2018}g' - 1 . This is a first order linear equation which as we know has a general solution. We also have the initial condition g ( 0 ) = 0 0 f ( t ) 1 + t 2 d t = 0 g(0) = \int_0^0 \frac{f(t)}{1 + t^2} dt = 0 so this is enough to uniquely determine a solution. Skipping the known procedure of multiplying by an integrating factor and then integrating, the solution is g ( x ) = e 2018 x 1 g(x) = e^{2018x} - 1 .

But notice that f ( x ) = 2018 ( 1 + x 2 ) ( g ( x ) + 1 ) f(x) = 2018(1 + x^2)(g(x) + 1) so we now have found that f ( x ) = 2018 ( 1 + x 2 ) e 2018 x f(x) = 2018(1 + x^2)e^{2018x} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...