A geometry problem by Naren Bhandari

Geometry Level 3

cos 2 π 7 + cos 4 π 7 + cos 8 π 7 = ? \large \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} + \cos\frac{8\pi}{7} = \,?

1 6 \frac{1}{6} 1 4 -\frac{1}{4} 1 2 -\frac{1}{2} 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 27, 2017

S = cos 2 π 7 + cos 4 π 7 + cos 8 π 7 Note that cos ( π x ) = cos x = cos 5 π 7 cos 3 π 7 cos π 7 = ( cos π 7 + cos 3 π 7 + cos 5 π 7 ) See note: k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 = 1 2 \begin{aligned} S & = \cos \frac {2\pi}7 + \cos \frac {4\pi}7 + \cos \frac {8\pi}7 & \small \color{#3D99F6} \text{Note that } \cos (\pi - x) = - \cos x \\ & = - \cos \frac {5\pi}7 - \cos \frac {3\pi}7 - \cos \frac {\pi}7 \\ & = - \left({\color{#3D99F6}\cos \frac {\pi}7 + \cos \frac {3\pi}7 + \cos \frac {5\pi}7} \right) & \small \color{#3D99F6} \text{See note: } \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12 \\ & = \boxed {- {\color{#3D99F6}\dfrac 12}} \end{aligned}


Note:

S = k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = { k = 0 n 1 e 2 k + 1 2 n + 1 π i } = { e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 } = { e π i 2 n + 1 ( 1 e 2 n π i 2 n + 1 1 e 2 π i 2 n + 1 ) } = { e π i 2 n + 1 e π i 1 e 2 π i 2 n + 1 } = { e π i 2 n + 1 + 1 ( 1 + e π i 2 n + 1 ) ( 1 e π i 2 n + 1 ) } = { 1 1 e π i 2 n + 1 } = { 1 1 cos π i 2 n + 1 i sin π i 2 n + 1 } = { 1 cos π i 2 n + 1 + i sin π i 2 n + 1 ( 1 cos π i 2 n + 1 ) 2 + sin 2 π i 2 n + 1 } = { 1 cos π i 2 n + 1 + i sin π i 2 n + 1 2 2 cos π i 2 n + 1 } = 1 2 \begin{aligned} S & = \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) \\ & = \Re \left \{ \sum_{k=0}^{n-1} e^{\frac {2k+1}{2n+1}\pi i} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k\pi i}{2n+1}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \left(\frac {1-e^{\frac {2n\pi i}{2n+1}}}{1-e^{\frac {2\pi i}{2n+1}}}\right) \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}}-e^{\pi i}}{1-e^{\frac {2\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}} + 1}{\left(1+e^{\frac {\pi i}{2n+1}} \right) \left(1-e^{\frac {\pi i}{2n+1}} \right)} \right \} \\ & = \Re \left \{ \frac 1{1-e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac 1{1-\cos \frac {\pi i}{2n+1} - i\sin \frac {\pi i}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi i}{2n+1} + i\sin \frac {\pi i}{2n+1}}{\left(1-\cos \frac {\pi i}{2n+1}\right)^2 + \sin^2 \frac {\pi i}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi i}{2n+1} + i\sin \frac {\pi i}{2n+1}}{2-2\cos \frac {\pi i}{2n+1}} \right \} \\ & = \frac 12 \end{aligned}

There's some typo. You accidentally included i in the argument of cos and sin.

Rui-Xian Siew - 4 years, 3 months ago

Log in to reply

Thanks. There must be similar errors in other solutions I have put up.

Chew-Seong Cheong - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...