Grade 8 - Number Theory #3

There are four distinct natural numbers a , b , c , d a,~b,~c,~d that are less than 10, such that 0. a ˙ b c d ˙ + 0. c ˙ d a b ˙ 0.\overline{\dot{a}bc\dot{d}}+0.\overline{\dot{c}da\dot{b}} is a natural number.

Find the value of a + b + c + d a+b+c+d .


Notation:

  • When recurring decimals are expressed, there are either one or two dots over their decimals. If there's one, the digit below it repeats endlessly. If there're two, the digits in between and including the digits below them repeats endlessly in the originally expressed order. Here are two examples to clear up.

  • p . q r s ˙ = p . q r s s s s s \overline{p.qr\dot{s}}=\overline{p.qrsssss\cdots} , and p . q r ˙ s t u v ˙ = p . q r s t u v r s t u v r s t u v \overline{p.q\dot{r}stu\dot{v}}=\overline{p.q~rstuv~rstuv~rstuv\cdots} .

This problem is a part of <Grade 8 - Number Theory> series .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Uros Stojkovic
Jul 6, 2017

It is easy to see that 0. a ˙ b c d ˙ + 0. c ˙ d a b ˙ = 1 0.\overline{\dot{a}bc\dot{d}}+0.\overline{\dot{c}da\dot{b}}=1 . Multiplying both sides with 10 , 000 10,000 :

10 , 000 = a b c d . a ˙ b c d ˙ + c d a b . c ˙ d a b ˙ = a b c d + c d a b + 0. a ˙ b c d ˙ + 0. c ˙ d a b ˙ = a b c d + c d a b + 1 \begin{aligned} 10,000 & =\overline{abcd.\dot{a}bc\dot{d}}+\overline{cdab.\dot{c}da\dot{b}} \\ & =\overline{abcd} + \overline{cdab} + 0.\overline{\dot{a}bc\dot{d}} + 0.\overline{\dot{c}da\dot{b}} \\ & =\overline{abcd}+\overline{cdab}+1\end{aligned}

a b c d + c d a b = 9999 a + c = 9 ; b + d = 9 ; c + a = 9 ; d + b = 9 2 ( a + b + c + d ) = 9 × 4 a + b + c + d = 18 \begin{aligned}\Rightarrow & \overline{abcd}+\overline{cdab}=9999 \\ & a+c=9; b+d=9; c+a=9; d+b=9 \\ & 2(a+b+c+d)=9\times 4 \\ & \boxed{a+b+c+d=18}\end{aligned}

Zach Abueg
Jul 8, 2017

We will prove that 0. a b c d 0.\overline{abcd} can always be expressed as a b c d 9999 \displaystyle \frac{abcd}{9999} for distinct, nonzero, positive integers a , b , c , d a, b, c, d .

We can write 0. a b c d 0.\overline{abcd} as 0. a b c d a b c d a b c d a b c d . . . 0.abcdabcdabcdabcd... . Now let x = 0. a b c d x = 0.\overline{abcd} . Then,

x = 0. a b c d + 0.0000 a b c d + 0.00000000 a b c d + = a b c d 10000 + a b c d 100000000 + a b c d 1000000000000 + = a b c d × ( 1 1 0 4 + 1 1 0 8 + 1 1 0 12 + ) S = a 1 r = a b c d × 1 1 0 4 1 1 1 0 4 = a b c d 9999 QED \displaystyle \begin{aligned} x & = 0.abcd + 0.0000abcd + 0.00000000abcd + \cdots \\ & = \frac{abcd}{10000} + \frac{abcd}{100000000} + \frac{abcd}{1000000000000} + \cdots \\ & = abcd \times \left( \frac{1}{10^4} + \frac{1}{10^8} + \frac{1}{10^{12}} + \cdots \right) & \small \color{#3D99F6} S_{\infty} = \frac{a}{1 - r} \\ & = abcd \times \frac{\frac{1}{10^4}}{1 - \frac{1}{10^4}} \\ & = \frac{abcd}{9999} & \small \text{QED} \end{aligned}

Observe that the maximum of a b c d + c d b a \displaystyle abcd + cdba occurs when { a , b , c , d } = { 9 , 7 , 8 , 6 } \{a, b, c, d\} = \{9, 7, 8, 6\} . We have

a b c d 9999 + c d b a 9999 = 9786 9999 + 8697 9999 = 18483 9999 < 2 a b c d 9999 + c d a b 9999 is a natural number a b c d 9999 + c d a b 9999 = 1 a b c d + c d a b = 9999 \displaystyle \begin{aligned} \frac{abcd}{9999} + \frac{cdba}{9999} & = \frac{9786}{9999} + \frac{8697}{9999} \\ & = \frac{18483}{9999} < 2 & \small \color{#3D99F6} \frac{abcd}{9999} + \frac{cdab}{9999} \ \text{is a natural number} \\ \implies \frac{abcd}{9999} + \frac{cdab}{9999} & = 1 \\ \implies abcd + cdab & = 9999 \end{aligned}

a + c = 9 a + c = 9 and b + d = 9 b + d = 9 , so a + b + c + d = 18 a + b + c + d = \boxed{18} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...