Graphic integral

Calculus Level 3

0 2020 π sin x + cos x d x = a b \large \int_{0}^{2020\pi} \left| \sin{x}+\cos{x} \right| dx = a \sqrt{b}

Find a + b \large a+b , where b \large b is square-free.


The answer is 4042.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 22, 2020

I = 0 2020 π sin x + cos x d x = 0 2020 π 2 sin ( x + π 4 ) d x Since the integrand has a period of π , = 2020 2 0 π sin ( x + π 4 ) d x = 2020 2 ( 0 3 4 π sin ( x + π 4 ) d x 3 4 π π sin ( x + π 4 ) d x ) Let θ = x + π 4 d θ = d x = 2020 2 ( 1 4 π π sin θ d θ π 5 4 π sin θ d θ ) = 2020 2 ( 1 4 π π sin θ d θ + 0 1 4 π sin θ d θ ) = 2020 2 0 π sin θ d θ = 2020 2 [ cos θ ] 0 π = 4040 2 \begin{aligned} I & = \int_0^{2020 \pi} \big|\sin x + \cos x\big| \ dx \\ & = \int_0^{2020 \pi} \left|\sqrt 2 \sin \left(x + \frac \pi 4\right) \right| \ dx & \small \blue{\text{Since the integrand has a period of }\pi,} \\ & = 2020\sqrt 2 \int_0^\pi \left|\sin \left(x + \frac \pi 4\right) \right| \ dx \\ & = 2020\sqrt 2 \left(\int_0^{\frac 34 \pi} \sin \left(x + \frac \pi 4\right) dx - \int_{\frac 34 \pi}^\pi \sin \left(x + \frac \pi 4\right) dx \right) & \small \blue{\text{Let }\theta = x + \frac \pi 4 \implies d\theta = d x} \\ & = 2020\sqrt 2 \left(\int_{\frac 14 \pi}^\pi \sin \theta \ d\theta - \int_\pi^{\frac 54 \pi} \sin \theta \ d\theta \right) \\ & = 2020\sqrt 2 \left(\int_{\frac 14 \pi}^\pi \sin \theta \ d\theta + \int_0^{\frac 14 \pi} \sin \theta \ d\theta \right) \\ & = 2020\sqrt 2 \int_0^\pi \sin \theta \ d\theta \\ & = 2020\sqrt 2 \bigg[-\cos \theta\bigg]_0^\pi \\ & = 4040 \sqrt 2 \end{aligned}

Therefore a + b = 4040 + 2 = 4042 a+b = 4040 + 2 = \boxed{4042} .

sin x + cos x = 2 sin ( x + π 4 ) |\sin x+\cos x|=√2|\sin {(x+\dfrac{π}{4})}| . Therefore the value of the integral is 2 × 2 × 2020 = 4040 2 √2\times 2\times {2020}=4040√2 . So a = 4040 , b = 2 a=4040, b=2 and a + b = 4042 a+b=\boxed {4042}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...