Gravitation is inspiration

Four particles, each of mass M and equidistant from each other, move along a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

1 2 G M ( 1 + 2 2 ) R \frac { 1 }{ 2 } \sqrt { \frac { GM\quad (1+2\sqrt { 2 } ) }{ R } } G M R \sqrt { \frac { GM }{ R } } G M ( 1 + 2 2 ) R \sqrt { \frac { GM\quad (1+2\sqrt { 2 } ) }{ R } } G M 2 2 R \sqrt { \frac { GM\quad 2\sqrt { 2 } }{ R } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rajdeep Dhingra
Sep 7, 2014

N e t f o r c e o n a n y o n e o f t h e p a r t i c l e = G M 2 ( 2 R ) 2 + G M 2 ( R 2 ) 2 c o s 45 o + G M 2 ( R 2 ) 2 c o s 45 o = G M 2 R 2 [ 1 4 + 1 2 ] T h i s f o r c e w i l l b e e q u a l t o c e n t r i p e t a l f o r c e s o M u 2 R = G M 2 R 2 [ 1 4 + 1 2 ] u = 1 2 G M R ( 2 2 + 1 ) Net\quad force\quad on\quad any\quad one\quad of\quad the\quad particle\\ =\quad \frac { G{ M }^{ 2 } }{ { (2R) }^{ 2 } } \quad +\quad \frac { G{ M }^{ 2 } }{ { (R\sqrt { 2 } ) }^{ 2 } } cos\quad { 45 }^{ o }\quad +\quad \frac { G{ M }^{ 2 } }{ { (R\sqrt { 2 } ) }^{ 2 } } cos\quad { 45 }^{ o }\quad \\ =\quad \frac { G{ M }^{ 2 } }{ { R }^{ 2 } } \left[ \frac { 1 }{ 4 } +\frac { 1 }{ \sqrt { 2 } } \right] \\ This\quad force\quad will\quad be\quad equal\quad to\quad centripetal\quad force\quad so\quad \\ \quad \quad \quad \quad \frac { M{ u }^{ 2 } }{ R } =\quad \dfrac{ G{ M }^{ 2 } }{ { R }^{ 2 } }\left[ \frac { 1 }{ 4 } +\frac { 1 }{ \sqrt { 2 } } \right] \\ \quad \quad \quad \quad u\quad =\quad \frac { 1 }{ 2 } \sqrt { \frac { GM }{ R } (2\sqrt { 2 } +1) }

@Rajdeep Dhingra nice solution, you are really good in physics, mind telling me resources you use.

Mardokay Mosazghi - 6 years, 8 months ago

Log in to reply

I study mostly from a site called "coursera.org". Hope you find it resourceful.

Rajdeep Dhingra - 6 years, 5 months ago

Typo :- M u 2 R = G M 2 R 2 [ 1 4 + 1 2 ] \dfrac{M u^{2}}{R} =\dfrac{G M^{2}}{R^{2}} [ \dfrac{1}{4} + \dfrac{1}{\sqrt{2}} ] .

Venkata Karthik Bandaru - 6 years, 1 month ago

Log in to reply

Corrected. Thanks

Rajdeep Dhingra - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...