Great !

Algebra Level 2

Find the least value of s s for the below equation.

1 s 1 s + 1 = 1 72 \large \dfrac{1}{s}-\dfrac{1}{s+1}=\dfrac{1}{72}


The answer is -9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Nov 28, 2015

1 s 1 s + 1 = 1 72 1 s ( s + 1 ) = 1 72 s 2 + s 72 = 0 ( s + 9 ) ( s 8 ) = 0 Least value of x = 9 \frac{1}{s}-\frac{1} {s+1}=\frac{1}{72} \Rightarrow \frac{1}{s(s+1)}=\frac{1}{72} \\ s^2+s-72=0 \Rightarrow (s+9)(s-8)=0 \\ \text{Least value of x}=\boxed{-9}

. .
May 16, 2021

1 s 1 s + 1 = 1 72 s + 1 s ( s + 1 ) s s ( s + 1 ) = 1 72 s + 1 s s ( s + 1 ) = 1 72 1 s ( s + 1 ) = 1 72 s ( s + 1 ) = 72 s 2 + s 72 = 0 ( s + 9 ) ( s 8 ) = 0 s = 9 or s = 8 \displaystyle \frac { 1 } { s } - \frac { 1 } { s + 1 } = \frac { 1 } { 72 } \rightarrow \frac { s + 1 } { s ( s + 1 ) } - \frac { s } { s ( s + 1 ) } = \frac { 1 } { 72 } \rightarrow \frac { s + 1 - s } { s ( s + 1 ) } = \frac { 1 } { 72 } \rightarrow \frac { 1 } { s ( s + 1 ) } = \frac { 1 } { 72 } \rightarrow s ( s + 1 ) = 72 \rightarrow s ^ { 2 } + s - 72 = 0 \rightarrow ( s + 9 ) ( s - 8 ) = 0 \rightarrow s = -9 \text { or } s = 8 \therefore the least value of s s is 9 \boxed { -9 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...