Great Inequality of Hong Kong!

Algebra Level 4

Find the maximium constant k k such that the following inequality is always true for all positive real numbers a a , b b , and c c such that min ( a b , b c , c a ) 1 \min (ab, bc, ca) \ge 1 :

( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) 3 ( a + b + c k ) 2 + 1 \large\ \sqrt [ 3 ]{ \left( { a }^{ 2 } + 1 \right) \left( { b }^{ 2 } + 1 \right) \left( { c }^{ 2 } + 1 \right) } \le { \left( \frac { a + b + c }{ k } \right) }^{ 2} + 1


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Jim
Jul 25, 2017

[Only 1st part of the solution]

Assume that a = b = c = 1 a=b=c=1 . Then it's obvious that k 3 k \le 3 .

Now let's prove that ( a + b + c ) 2 + 9 9 ( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) 3 { (a+b+c) }^{ 2 }+9\ge 9\sqrt [ 3 ]{ ({ a }^{ 2 }+1)({ b }^{ 2 }+1)({ c }^{ 2 }+1) } for all a , b , c a,b,c and we are done.

Priyanshu Mishra
Jul 24, 2017

We first show the following.

Claim 1 : For any positive real numbers x , y x, y with x y 1 xy \ge 1 , we have

( x 2 + 1 ) ( y 2 + 1 ) ( ( x + y 2 ) 2 + 1 ) 2 \large\ \left( { x }^{ 2 } + 1 \right) \left( { y }^{ 2 } + 1 \right) \le { \left( { \left( \frac { x + y }{ 2 } \right) }^{ 2 } + 1 \right) }^{ 2 } . . . . ( 2 ) ...(2) .

Proof : Note that x y 1 xy \ge 1 implies ( x + y 2 ) 2 1 x y 1 0 { \left( \frac { x + y }{ 2 } \right) }^{ 2 } - 1 \ge xy - 1 \ge 0 . We find that

( x 2 + 1 ) ( y 2 + 1 ) = ( x y 1 ) 2 + ( x + y ) 2 ( ( x + y 2 ) 2 1 ) 2 + ( x + y ) 2 = ( ( x + y 2 ) 2 + 1 ) 2 \large\ \left( { x }^{ 2 } + 1 \right) \left( { y }^{ 2 } + 1 \right) = { \left( xy - 1 \right) }^{ 2 } + { \left( x + y \right) }^{ 2 } \le { \left( { \left( \frac { x + y }{ 2 } \right) }^{ 2 } - 1 \right) }^{ 2 } + { \left( x + y \right) }^{ 2 } = { \left( { \left( \frac { x + y }{ 2 } \right) }^{ 2 } + 1 \right) }^{ 2} .

WLOG assume that a b c a \ge b \ge c . This implies a 1 a \ge 1 . Let d = a + b + c 3 d = \frac { a + b + c }{ 3 } , Note that

a d = a ( a + b + c ) 3 1 + 1 + 1 3 = 1 ad = \frac { a\left( a + b + c \right) }{ 3 } \ge \frac { 1 + 1 + 1 }{ 3 } = 1 .

Then we can apply ( 2 ) (2) to the pair a , d a, d and the pair b , c b, c . We get

( a 2 + 1 ) ( d 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) ( ( a + d 2 ) 2 + 1 ) 2 ( ( b + c 2 ) 2 + 1 ) 2 . \large\ \left( { a }^{ 2 } + 1 \right) \left( d^{ 2 } + 1 \right) \left( b^{ 2 } + 1 \right) \left( c^{ 2 } + 1 \right) \le { \left( { \left( \frac { a + d }{ 2 } \right) }^{ 2 } + 1 \right) }^{ 2 }{ \left( { \left( \frac { b + c }{ 2 } \right) }^{ 2 } + 1 \right) }^{ 2 }. . . . . . ( 3 ) ....(3)

Next from

( a + d 2 ) . ( b + c 2 ) a d . b c 1 \left( \frac { a +d }{ 2 } \right) .\left( \frac { b + c }{ 2 } \right) \ge \sqrt { ad } .\sqrt { bc } \ge 1 ,

we can apply ( 2 ) (2) again to the pair ( a + d 2 , b + c 2 ) \left( \frac { a+d }{ 2 } ,\frac { b+c }{ 2 } \right) . Together with ( 3 ) (3) , we have

( a 2 + 1 ) ( d 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) ( ( a + b + c + d 4 ) 2 + 1 ) 4 = ( d 2 + 1 ) 4 . \large\ \left( { a }^{ 2 }+1 \right) \left( d^{ 2 }+1 \right) \left( b^{ 2 }+1 \right) \left( c^{ 2 }+1 \right) \le { \left( { \left( \frac { a+b+c+d }{ 4 } \right) }^{ 2 } + 1 \right) }^{ 4 } = { \left( d^{ 2 } + 1 \right) }^{ 4 }. .

Therefore, ( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) ( d 2 + 1 ) 3 . \left( { a }^{ 2 }+ 1 \right) \left( b^{ 2 }+1 \right) \left( c^{ 2 }+1 \right) { \le \left( d^{ 2 }+1 \right) }^{ 3 }. , and the below expression follows by taking the cube root of both above sides.

( a 2 + 1 ) ( b 2 + 1 ) ( c 2 + 1 ) 3 ( a + b + c 3 ) 2 + 1 \large\ \sqrt [ 3 ]{ \left( { a }^{ 2 } + 1 \right) \left( b^{ 2 } + 1 \right) \left( c^{ 2 } + 1 \right) } \le { \left( \frac { a+b+c }{ 3 } \right) }^{ 2 } + 1 .

Is there a non-Jensen way to solve this?

Steven Jim - 3 years, 10 months ago

Log in to reply

Indeed see my new solution.

Priyanshu Mishra - 3 years, 10 months ago

Log in to reply

That's a great one. Thanks!

Steven Jim - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...