Great Radical Equation

Geometry Level 3

4 x 1 x 2 2 = 0 4x\sqrt{1-x^2} -\sqrt2 = 0

For x [ 1 , 1 ] x \in [-1,1] , the roots of the equation above can be expressed in the form cos ( 1 n π ) \cos\left( \frac 1 n \pi\right) and sin ( 1 n π ) \sin\left( \frac 1 n \pi\right) , where n n is a positive integer.

Find the value of n n .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 24, 2015

Let x = sin θ x=\sin \theta as suggested, then:

4 x 1 x 2 2 = 0 4 x 1 x 2 = 2 4 sin θ 1 sin 2 θ = 2 4 sin θ cos θ = 2 2 sin ( 2 θ ) = 2 sin ( 2 θ ) = 1 2 2 θ = π 4 θ = π 8 for 0 θ π 2 \begin{aligned} 4x\sqrt{1-x^2}-\sqrt{2} & = 0 \\ 4x\sqrt{1-x^2} & = \sqrt{2} \\ 4\sin \theta \sqrt{1-\sin^2 \theta} & = \sqrt{2} \\ 4 \sin \theta \cos \theta & = \sqrt{2} \\ 2 \sin (2\theta) & = \sqrt{2} \\ \sin (2\theta) & = \frac{1}{\sqrt{2}} \\ \Rightarrow 2 \theta & = \frac{\pi}{4} \\ \theta & = \frac{\pi}{8} \quad \quad \small \color{#3D99F6}{\text{for } 0 \le \theta \le \frac{\pi}{2}} \end{aligned}

b a = 8 1 = 7 \Rightarrow b - a = 8 - 1 = \boxed{7}

I suppose we could also have that sin ( 2 θ ) = 1 2 2 θ = 3 π 4 θ = 3 π 8 , \sin(2\theta) = \dfrac{1}{\sqrt{2}} \Longrightarrow 2\theta = \dfrac{3\pi}{4} \Longrightarrow \theta = \dfrac{3\pi}{8},

which still meets the condition that 0 θ π 2 . 0 \le \theta \le \dfrac{\pi}{2}. This would yield an alternate answer of 8 3 = 5. 8 - 3 = 5. The pairs of roots are identical since sin ( π 8 ) = cos ( 3 π 8 ) \sin(\frac{\pi}{8}) = \cos(\frac{3\pi}{8}) and cos ( π 8 ) = sin ( 3 π 8 ) , \cos(\frac{\pi}{8}) = \sin(\frac{3\pi}{8}), but the solution to this question as presently worded is not unique.

Brian Charlesworth - 5 years, 6 months ago
Aareyan Manzoor
Nov 23, 2015

note that x must be positive. now solve 4 x 1 x 2 = 2 4x\sqrt{1-x^2}=\sqrt{2} 16 x 2 16 x 4 = 2 16x^2-16x^4=2 8 x 4 8 x 2 + 1 = 0 8x^4-8x^2+1=0 x 2 = 2 ± 2 4 x^2=\dfrac{2\pm\sqrt{2}}{4} x = 2 ± 2 2 x=\dfrac{\sqrt{2\pm\sqrt{2}}}{2} negative neglected. since in the first quadrant sin (y)<cos (y), c o s ( y ) = 2 + 2 2 , s i n ( y ) = 2 2 2 cos (y) =\dfrac{\sqrt{2+\sqrt{2}}}{2},sin (y) =\dfrac{\sqrt{2-\sqrt{2}}}{2} c o s ( 2 y ) = c o s 2 ( y ) s i n 2 ( y ) = 2 + 2 4 2 2 4 = 2 2 cos (2y)=cos^2(y)-sin^2(y)=\dfrac{2+\sqrt{2}}{4}-\dfrac{2-\sqrt{2}}{4}=\dfrac{\sqrt{2}}{2} 2 y = π 4 y = 1 π 8 2y=\dfrac{\pi}{4}\Longrightarrow y=\dfrac{1\pi}{8} 8 1 = 7 8-1=\boxed{7} not that other solutions to 2y neglected as conditions for first quadrant.

Samarth Agarwal
Nov 23, 2015

x [ 1 , 1 ] h i n t s u s t o s u b s t i t u t e x = c o s θ . 1 x 2 = 1 c o s 2 θ = s i n θ s i n c e θ 1 s t q u a d r a n t s i n θ = s i n θ 4 c o s θ s i n θ = 2 s i n 2 θ = 1 2 s i n 2 θ = s i n π 4 θ = π 8 x = c o s π 8 a = 1 , b = 8 b a = 7 . x\in [-1,1]\quad hints\quad us\quad to\quad substitute\quad x=\quad cos\theta .\\ \sqrt { 1-{ x }^{ 2 } } =\sqrt { 1-{ cos }^{ 2 }\theta } \\ \quad \quad \quad \quad \quad \quad =|sin\theta |\\ since\quad \theta \in \quad 1st\quad quadrant\\ |sin\theta |=sin\theta \\ \therefore \quad 4cos\theta sin\theta \quad =\sqrt { 2 } \\ sin2\theta =\frac { 1 }{ \sqrt { 2 } } \\ sin2\theta =sin\frac { \pi }{ 4 } \\ \theta =\frac { \pi }{ 8 } \\ x=cos\frac { \pi }{ 8 } \\ a=1,b=8\\ b-a=\boxed { 7 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...