greatest divisors!

Let A = { 1 , 2 , 3 , . . . 2 2015 } A=\{1,2,3,...2^{2015} \} . Consider the higher odd divisors of each of the elements A A and sum them.

If that sum can express as 4 a + 2 b \frac{4^a+2}{b}

Find a + b + 4 a+b+4 .


The answer is 2022.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Paola Ramírez
Jan 17, 2015

Let m ϵ A m \epsilon A are three cases:

  1. m = 2 n m=2^n \Rightarrow the greatest odd divisor is 1 1

  2. m = 2 k m=2k \Rightarrow the greatest odd divisor is k k

3. m = 2 k 1 m=2k-1 \Rightarrow the greatest odd divisor is 2 k 1 2k-1

Then S ( 1 , 2 , 3... 2 2015 S(1,2,3...2^{2015} sum of the greatest odd divisor each elemte of A A

Have that

S 2105 = S ( 1 , 2 , 3... 2 2015 ) = S ( 1 , 3 , 5... 2 2015 1 ) + S ( 2 , 4 , 6... 2 2015 ) S_{2105}=S(1,2,3...2^{2015})=S(1,3,5...2^{2015}-1)+S(2,4,6...2^{2015})

S ( 1 , 2 , 3... 2 2015 ) = ( 2 2014 ) 2 + S ( 1 , 2 , 3... 2 2014 ) S(1,2,3...2^{2015})=(2^{2014})^2+S(1,2,3...2^{2014})

S ( 1 , 2 , 3... 2 2015 ) = ( 2 2014 ) 2 + S 2014 S(1,2,3...2^{2015})=(2^{2014})^2+S_{2014}

Then S 2014 = S ( 1 , 3 , 5 , . . 2 2014 1 ) + S ( 2 , 4 , 6... 2 2014 ) S_{2014}=S(1,3,5,..2^{2014}-1)+S(2,4,6...2^{2014})

S 2014 = ( 2 2013 ) 2 + S ( 2 , 4 , 6... 2 2014 ) S_{2014}=(2^{2013})^2+S(2,4,6...2^{2014})

S 2014 = ( 2 2013 ) 2 + S 2013 S_{2014}=(2^{2013})^2+S_{2013}

and so successively.

Later

S 2015 S 2014 = ( 2 2014 ) 2 = 4 2014 S_{2015}-S_{2014}=(2^{2014})^{2}=4^{2014}

S 2014 S 2013 = ( 2 2013 ) 2 = 4 2013 S_{2014}-S_{2013}=(2^{2013})^{2}=4^{2013}

\vdots

S 3 S 2 = ( 2 2 ) 2 = 4 2 S_{3}-S_{2}=(2^{2})^{2}=4^{2}

S 2 S 1 = ( 2 1 ) 2 = 4 1 S_{2}-S_{1}=(2^{1})^{2}=4^{1}

( S 2015 S 2014 ) + ( S 2014 S 2013 ) + . . . + ( S 3 S 2 ) + ( S 2 S 1 ) = S 2015 S 1 \Rightarrow (S_{2015}-S_{2014})+(S_{2014}-S_{2013})+...+(S_{3}-S_{2})+(S_{2}-S_{1})=S_{2015}-S_{1}

S 2015 S 1 = 4 2014 + 4 2013 + 4 2012 . . . 4 3 + 4 2 + 4 = 4 2015 4 4 1 S_{2015}-S_{1}=4^{2014}+4^{2013}+4^{2012}...4^{3}+4^{2}+4=\frac{4^{2015}-4}{4-1}

S 2015 2 = 4 2015 4 3 S_{2015}-2=\frac{4^{2015}-4}{3}

S 2015 = 4 2015 4 3 + 2 S_{2015}=\frac{4^{2015}-4}{3}+2

S 2015 = 4 2015 + 2 3 S_{2015}=\frac{4^{2015}+2}{3}

So

a = 2015 a=2015

b = 3 b=3

a + b = 4 + 2015 + 3 = 2022 \boxed{a+b=4+2015+3=2022}

How about a+b+c=2+4030+3=4035?

Joel Tan - 6 years, 4 months ago

Log in to reply

Check problem redaction

Paola Ramírez - 6 years, 4 months ago

We have to "extract" the highest power of 2 2 from each element of A A to get the highest odd divisor of each of the elements.

For the odd elements the highest power of 2 2 is of course 0 0 , so we add all the odd numbers, 2 2014 2^{2014} of them in total, to get

1 + 3 + 5 + . . . . . + ( 2 2015 1 ) = ( 2 2014 ) 2 = 4 2014 1 + 3 + 5 + ..... + (2^{2015} - 1) = (2^{2014})^{2} = 4^{2014} ,

since the sum of the first n n odd natural numbers is n 2 n^{2} .

Next, divide by 2 2 those elements of A A for which the highest power of 2 2 in their prime factorization is 1 1 . What remains is

1 + 3 + 5 + . . . . . + ( 2 2014 1 ) = ( 2 2013 ) 2 = 4 2013 1 + 3 + 5 + ..... + (2^{2014} - 1) = (2^{2013})^{2} = 4^{2013} .

We then deal with the elements of A A for which the highest power of 2 2 in their prime factorizations is 2 2 . What remains is

1 + 3 + 5 + . . . . . + ( 2 2013 1 ) = ( 2 2012 ) 2 = 4 2012 1 + 3 + 5 + ..... + (2^{2013} - 1) = (2^{2012})^{2} = 4^{2012} .

We continue this process for successively higher powers k k of 2 2 , in each case the sum of highest odd divisors being 4 2014 k 4^{2014 - k} for 0 k 2014 0 \le k \le 2014 . We thus end up with the geometric series

4 2014 + 4 2013 + 4 2012 + . . . . . + 4 2 + 4 1 + 4 0 = 4 2015 1 3 . 4^{2014} + 4^{2013} + 4^{2012} + ..... + 4^{2} + 4^{1} + 4^{0} = \dfrac{4^{2015} - 1}{3}.

Finally we need to consider 2 2015 2^{2015} itself, the highest odd divisor being of course 1 1 . So the desired sum is

4 2015 1 3 + 1 = 4 2015 + 2 3 \dfrac{4^{2015} - 1}{3} + 1 = \dfrac{4^{2015} + 2}{3} ,

and so a + b + c = 4 + 2015 + 3 = 2022 a + b + c = 4 + 2015 + 3 = \boxed{2022} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...